首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7415篇
  免费   54篇
  国内免费   38篇
航空   3687篇
航天技术   2490篇
综合类   250篇
航天   1080篇
  2021年   56篇
  2018年   98篇
  2017年   88篇
  2016年   64篇
  2015年   42篇
  2014年   131篇
  2013年   170篇
  2012年   169篇
  2011年   281篇
  2010年   190篇
  2009年   290篇
  2008年   339篇
  2007年   200篇
  2006年   180篇
  2005年   179篇
  2004年   162篇
  2003年   215篇
  2002年   249篇
  2001年   283篇
  2000年   157篇
  1999年   185篇
  1998年   215篇
  1997年   171篇
  1996年   184篇
  1995年   233篇
  1994年   224篇
  1993年   136篇
  1992年   173篇
  1991年   83篇
  1990年   97篇
  1989年   171篇
  1988年   80篇
  1987年   81篇
  1986年   75篇
  1985年   229篇
  1984年   168篇
  1983年   158篇
  1982年   161篇
  1981年   216篇
  1980年   73篇
  1979年   66篇
  1978年   79篇
  1977年   52篇
  1976年   60篇
  1975年   76篇
  1974年   57篇
  1972年   72篇
  1971年   61篇
  1970年   46篇
  1969年   47篇
排序方式: 共有7507条查询结果,搜索用时 25 毫秒
1.
The paper presents the research results of the effect of a capacitor energy storage device configuration on the specific characteristics of advanced modern propulsion systems based on the ablative pulsed plasma thrusters (APPT). These thrusters are designed to perform specific tasks within the small spacecrafts with the onboard power capacity up to 200 W.  相似文献   
2.
It is a known fact that ionosphere is the largest and the least predictable among the sources of error limiting the reliability and accuracy of Global Navigation Satellite Systems (GNSS) and its regional augmentation systems like Satellite Based Augmentation System (SBAS) in a safety-of-life application. The situation becomes worse in the Equatorial Ionization Anomaly (EIA) region, where the daytime ionization distribution is modified by the fountain effect that develops a crest of electron density at around ±15° to ±20° of the magnetic equator and a trough at the magnetic equator during the local noon hours. Related to this phenomenon is the appearance of ionosphere irregularities and plasma bubbles after local sunset. These may degrade further the quality of service obtained from the GNSS/SBAS system of the said periods. Considering the present operational augmentation systems, the accuracy and integrity of the ionosphere corrections estimate decreases as the level of disturbances increases. In order to provide a correct ionosphere correction to the user of GNSS operating in African EIA region and meet the integrity requirements, a certified ionosphere correction model that accurately characterizes EIA gradient with the full capacity to over-bound the residual error will be needed. An irregularities detector and a decorrelation adaptor are essential in an algorithm usable for African sub-Saharan SBAS operation. The algorithm should be able to cater to the equatorial plasma vertical drifts, diurnal and seasonal variability of the ionosphere electron density and also should take into account the large spatial and temporal gradients in the region. This study presents the assessment of the ionosphere threat model with single and multi-layer algorithm, using modified planar fit and Kriging approaches.  相似文献   
3.
This paper explores methods for approximating and analyzing the dynamics of highly perturbed spacecraft formations with an emphasis on computationally efficient approaches. This facilitates on-board computation or rapid preliminary mission design analysis. Perturbed formation dynamics are often approximated as linear time-varying (LTV) systems, for which Floquet theory can be used to analyze the degree of system instability. Furthermore, the angular momentum of the relative orbital state can be computed with the approximate dynamics to provide additional insight. A general methodology is developed first and then applied to the problem of unstable formation dynamics in asteroid orbits. Here the dominant perturbative effects due to low-order gravitational harmonics and solar radiation pressure are modeled. Numerical simulations validate the approach and illustrate the approximation accuracy achieved.  相似文献   
4.
5.
6.
7.
The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.  相似文献   
8.
The main objective of our work was to investigate the impact of rain on wave observations from C-band (~5.3 GHz) synthetic aperture radar (SAR) in tropical cyclones. In this study, 10 Sentinel-1 SAR images were available from the Satellite Hurricane Observation Campaign, which were taken under cyclonic conditions during the 2016 hurricane season. The third-generation wave model, known as Simulating WAves Nearshore (SWAN) (version 41.31), was used to simulate the wave fields corresponding to these Sentinel-1 SAR images. In addition, rainfall data from the Tropical Rainfall Measuring Mission satellite passing over the spatial coverage of the Sentinel-1 SAR images were collected. The simulated results were validated against significant wave heights (SWHs) from the Jason-2 altimeter and European Centre for Medium-Range Weather Forecasts data, revealing a root mean square error (RMSE) of ~0.5 m with a 0.25 scatter index. Winds retrieved from the VH-polarized Sentinel-1 SAR images using the Sentinel-1 Extra Wide-swath Mode Wind Speed Retrieval Model after Noise Removal were taken as prior information for wave retrieval. It was discovered that rain did indeed affect the SAR wave retrieval, as evidenced by the 3.21-m RMSE of SWHs between the SAR images and the SWAN model, which was obtained for the ~1000 match-ups with raindrops. The raindrops dampened the wave retrieval when the rain rate was < ~5 mm/hr; however, they enhanced wave retrieval for higher rain rates. It was also found that the portion of the rain-induced ring wave with a wave number > 0.05 rad/m (~125 m wavelength) was clearly observed in the SAR-derived wave spectra.  相似文献   
9.
An evident signature of a least studied quasi-90-day oscillation is found in the winds and tides in the MLT from an equatorial station, São João do Cariri (7.4°S, 36.5°W). The oscillation is found to appear mainly in certain intervals with small but appreciable seasonal (fourth harmonic of annual oscillation) contribution. The maximum amplitude of the oscillation is found to be around 10 m/s in the zonal wind. The enhancement peak of the oscillation exhibits downward movement indicating a plausible role of upward moving waves/tides in carrying its imprint from below to the MLT. Similar oscillation feature in the tropospheric zonal wind and ozone may imply its lower atmospheric origin as a component of the intraseasonal oscillation (ISO) that moves upward by modulating the tides. Subsequently, the propagating tides (mainly semidiurnal) are enhanced by the ozone in the stratosphere through absorption of solar UV radiation and finally manifest the oscillation in the MLT. Consistency of the present findings with the past investigations are observed in some aspects of the oscillation, whereas existing mismatches in others are believed to be due to geophysical variability depending on space and time among various locations on the globe.  相似文献   
10.
Within the analysis of space geodetic observations, errors of the applied subdaily Earth rotation model can induce systematic effects in different estimated parameters. In this paper, we focus on the impact of the subdaily Universal Time (UT1) model on the celestial pole offsets (CPO) estimated from very long baseline interferometry (VLBI) observations. We provide a mechanism that describes the error propagation from the subdaily UT1 into the daily CPO.In typical 24-h VLBI sessions the observed quasars are well distributed over the sky. But the observations, if looked at from the Earth-fixed frame, are not homogeneously distributed. The amount of observations performed in different terrestrial directions shows an irregularity which can be roughly compared to the case where the observations are collected in only one Earth-fixed direction. This peculiarity leads to artefacts in VLBI solutions, producing a correlation between the subdaily variations in UT1 and the position of the celestial pole. As a result errors in diurnal terms of the subdaily UT1 model are partly compensated by the estimated CPO. We compute for each 24-h VLBI session from 1990 until 2011 the theoretical response of the CPO to an error in the subdaily UT1 by setting up a least-squares adjustment model and using as input the coordinates of the observed quasars and observation epochs. Then real observed response of the estimated CPO derived from the VLBI session solutions is compared to the predicted one. A very good agreement between the CPO values estimated from VLBI and the predicted values was achieved. The presented model of error propagation from the subdaily UT1 into the daily CPO allows to predict and explain the behaviour of CPO estimates of VLBI solutions computed with different subdaily Earth rotation models, what can be helpful for testing the accuracy of different subdaily tidal models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号