首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capturing large space debris with complex rotational motion is extremely challenging. A de-tumbling phase before capturing may be necessary to reduce the risk of collision with debris. This paper proposes a new noncontact de-tumbling method using a two-satellite electromagnetic formation, in which two small electromagnetic satellites, each having a high-temperature superconducting coil, generate control torques to reduce the rotation rate of debris prior to making any physical contact. The electromagnetic interaction of the target-satellite system is analyzed. A relative translational dynamics of the target–satellite system and the attitude dynamics of the target are established. Simulation results show that the proposed method effectively eliminates the rotational motion of the target. It can be safely concluded that the noncontact method for de-tumbling space debris using a two-satellite electromagnetic formation is feasible and potentially applicable to on-orbit capture.  相似文献   

2.
This paper addresses the relative position tracking and attitude synchronization control problem for spacecraft formation flying (SFF). Based on the derived relative coupled six-degree-of-freedom dynamics, a robust adaptive finite-time fast terminal sliding mode controller is proposed to achieve the desired formation in the presence of model uncertainties and external disturbances. It is shown that the designed controller is effective for changing information exchange topology making it robust to node failure. Then, the artificial potential function method is employed to generate collision avoidance schemes to modify the controller such that inter-agent collision avoidance can be ensured during the formation maneuver, which is critical for practical missions. The stability of the overall closed-loop system is proved by using Lyapunov theory. Finally, numerical examples for a given SFF scenario are presented to illustrate the performance of the controller.  相似文献   

3.
提出一个全新的八面体航天器编队构型,该构型体现出当前编队飞行多种轨道构型的特征,同时也适于作为空间演示试验的编队飞行模式。八面体编队构型的设计思路是基于C-W方程,轨道平面内沿航向编队构型可利用轨道动力学自然保持,正上方或正下方编队构型则需要依靠平面内控制来实现,垂直轨道平面的编队构型需要施加法向控制来实现。对基于C-W方程的悬停动力学模型进行了精度分析,最后以低轨道航天器的八面体编队构型为例进行了数学仿真验证。  相似文献   

4.
This study presents a semi-analytic approach for optimal tracking and formation keeping with high precision. For a continuous-thrust propulsion system, optimal formation keeping problems near a general Keplerian orbit are formulated with respect to a reference trajectory which is an explicit function of time. A nonlinear optimal tracking control law is then derived in generic form as a function of the states by employing generating functions in the theory of Hamiltonian systems. The applicability of the overall process is not affected by the complexity of dynamics and the selection of coordinates. As it allows us to design a nonlinear optimal feedback controller in the Earth-centered inertial frame, a variety of nonlinear perturbations can be incorporated easily without complicated coordinate transformations. Numerical experiments demonstrate that the nonlinear tracking control logic achieves superior tracking accuracy and cost reduction by accommodating higher-order nonlinearities.  相似文献   

5.
近地轨道集群航天器电磁编队飞行非线性反馈控制方法   总被引:1,自引:0,他引:1  
针对近地轨道集群航天器电磁编队飞行的动力学和控制问题, 提出了一种非线性反馈控制方法. 基于电磁力模型和地磁场模型, 分析了地磁场对近地轨道电磁编队的影响; 建立了集群航天器电磁编队高精度相对轨道动力学模型; 基于Lyapunov稳定性理论设计了一种非线性反馈控制律, 利用该方法对两星电磁编队维持控制进行了仿真验证. 仿真结果表明, 地磁场引起的电磁干扰力可以忽略, 但是电磁干扰力矩的影响必须考虑; 近地轨道集群航天器电磁编队是可控的, 所设计的控制方法是可行的.   相似文献   

6.
电磁航天器编队动力学建模与运动规划方法   总被引:7,自引:6,他引:1  
基于电磁航天器作用原理,利用拉格朗日方法,建立电磁航天器“绳系”动力学模型.基于偏差线性化动力学模型,以切向、径向编队为例,分析编队构型保持稳定性,设计构型保持控制律;将双星电磁航天器编队(EMFF,Electromagnetic Formation Flight)重构运动规划问题转化为标准优化问题,利用高斯伪谱优化方法进行求解.并提出序列控制策略,将该双星模型扩展应用于多星电磁编队构型重构问题,转化为多阶段运动规划问题利用多阶段优化方法进行求解.仿真结果表明本文的动力学建模方法和控制方法是可行的.   相似文献   

7.
自动空中加油阶段加油机尾涡流场建模与仿真   总被引:3,自引:1,他引:2  
针对自动空中加油技术对于加油机尾涡精确建模的需要,通过分析大型加油机机翼尾涡形成机理和运动规律,运用改进的马蹄涡理论方法建立了较精确的考虑尾涡衰减和扩散特性的尾涡空间流场计算模型,之后将此流场模型在受油机质心处线性化,并采用平均化的方法计算得到受油机受到的平均风分量和风梯度值,在分析受油机受扰运动中利用气动等效的方法将尾涡对受油机的影响模型加入到受油机非线性全量方程中.在此基础上利用Matlab/Simulink搭建仿真平台对空中加油阶段受油机扰动运动进行了仿真验证.仿真结果表明,所建立的尾涡模型能够反映受油机受扰后的动态特性,与有人机飞行员的飞行经验相符,该模型还可用于大型飞机起飞飞行安全和近距编队飞行的扰动分析.  相似文献   

8.
分布式卫星SAR系统是近年来受到广泛重视的一种新的雷达成像手段,其中分布式InSAR充分利用编队星座卫星间构成的空间基线进行干涉测高,从而实现立体成像.在InSAR系统设计中,解决好编队星座的设计问题是实现高性能成像的前提和保证,合理的星座构形设计有助于提高测高精度,从而获得高品质的雷达成像效果.从InSAR测高精度分析结果入手,由飞行力学角度阐述星间相对运动对测高精度产生的影响,并基于分析结果给出了一种有别于现有星座的特色编队构形,并对其性能进行了初步分析.   相似文献   

9.
The configuration boundedness of the three-body model dynamics is studied for Sun-Earth formation flying missions. The three-body formation flying model is built up with considering the lunar gravitational acceleration and solar radiation pressure. Because traditional linearized dynamics based method has relatively lower accuracy, a modified nonlinear formation configuration analysis method is proposed in this paper. Comparative studies are carried out from three aspects, i.e., natural formation configuration with arbitrary departure time, initialization time and formation configuration boundedness, and specific initialization time for bounded formation configuration. Simulations demonstrate the differences between the two schemes, and indicate that the nonlinear dynamic method reduces the error caused by the model linearization and disturbance approximation, and thus provides higher accuracy for boundedness analysis, which is of value to initial parameters selection for natural three-body formation flying.   相似文献   

10.
应用钠原子和中性大气分子的质量连续性方程来模拟突发纳层(SSL),垂直风场采用接近实际大气重力波的正弦行波模式,结果较好地反映了SSL的形成过程。SSL的形成时刻在5-15min之间并可持续到30min之后,形成高度大约在90-100km之间,峰宽为0.5-2km之间,这些都与实际观测SSL的特点相符,同时还进一步地研究了当重力波参数(主要指垂直波长和周期)、风速以及常态钠层半宽度发生变化时SSL的变化趋势。  相似文献   

11.
In this review, we discuss the structure and dynamics of the magnetospheric Low-Latitude Boundary Layer (LLBL) based on recent results from multi-satellite missions Cluster and Double Star. This boundary layer, adjacent to the magnetopause on the magnetospheric side, usually consists of a mixture of plasma of magnetospheric and magnetosheath origins, and plays an important role in the transfer of mass and energy from the solar wind into the magnetosphere and subsequent magnetospheric dynamics. During southward Interplanetary Magnetic Field (IMF) conditions, this boundary layer is generally considered to be formed as a result of the reconnection process between the IMF and magnetospheric magnetic field lines at the dayside magnetopause, and the structure and plasma properties inside the LLBL can be understood in terms of the time history since the reconnection process. During northward IMF conditions, the LLBL is usually thicker, and has more complex structure and topology. Recent observations confirm that the LLBL observed at the dayside can be formed by single lobe reconnection, dual lobe reconnection, or by sequential dual lobe reconnection, as well as partially by localized cross-field diffusion. The LLBL magnetic topology and plasma signatures inside the different sub-layers formed by these processes are discussed in this review. The role of the Kelvin-Helmholtz instability in the formation of the LLBL at the flank magnetopause is also discussed. Overall, we conclude that the LLBL observed at the flanks can be formed by the combination of processes, (dual) lobe reconnection and plasma mixing due to non-linear Kelvin-Helmholtz waves.   相似文献   

12.
电磁航天器编队位置跟踪自适应协同控制   总被引:2,自引:2,他引:0  
通过引入一致性理论针对电磁航天器编队相对位置协同控制问题设计了自适应协同控制器。分析了电磁航天器编队的基本原理,建立了电磁航天器编队相对运动精确的非线性动力学方程。基于电磁力远场计算模型的不确定性,对相对运动动力学模型进行了修正。在电磁力计算模型不确定和航天器间存在通信时延的条件下,对位置跟踪控制的目标设计了自适应协同控制器。考虑到电磁航天器磁矩产生能力的不同,给出了通过优化进行磁矩分配的方案。通过仿真表明:所设计的自适应协同控制器不仅实现了对期望轨迹的准确跟踪,而且相比人工势函数法,暂态维持编队构型的能力提高了4.9倍,并且所给出的磁矩分配方案实现了磁矩的合理分配。  相似文献   

13.
卫星编队飞行动力学仿真及其应用   总被引:7,自引:2,他引:5  
由若干颗小卫星编队飞行组成一个虚拟卫星,其功能相当或超过一颗大卫星,这将开拓小卫星一个完全崭新的应用领域。文章首先研究轨道动力学,系统地研究编队飞行三种动力学模型,其次进行定位卫星和区域导航系统两个实例数学仿真,分析研究各种数学模型的精度和它们的应用场合。  相似文献   

14.
One of the most characteristic features of the summer mesopause at high latitudes is the very low temperature. Earlier measurements have shown temperatures in the range down to 135 K around 86 km altitude, whereas the most recent in situ measurements have revealed temperatures still much lower than that in a rather wide altitude region. The reasons for these low temperatures are to be found in the dynamics of the strato- and mesospheres. Upwinds and gravity wave activity over the summer hemisphere cause efficient cooling of the atmosphere.Also other effects are caused by the updrafts. The vertical transport velocity for important minor constituents is increased, which for instance causes the concentration of water vapor around the mesopause to be enhanced by large factors. This situation is of major importance for the possibility of forming noctilucent clouds (NLC).NLC are believed to be composed of small water ice particles, which because of the low temperatures can be formed on existing condensation nuclei. Two of the main questions regarding the formation of NLC concern the water vapor budget of the upper mesosphere and the origin of the condensation nuclei.This paper gives a general introduction to mesospheric physics and composition. Some results from recent satellite and rocket experiments are reviewed and the campaign layout and the performed experiments within the MAP project CAMP are described. The results from the different experiments are presented in four accompanying papers on CAMP results.  相似文献   

15.
当前火星探测器环绕段的导航信息主要依赖地面深空探测网提供,基于光学成像的导航方式尚不能提供较高的导航精度。因此提出一种应用相对测量的探测器实现火星环绕段的自主导航。两颗编队飞行的探测器进行相对测量,观测信息为探测器之间的相对视线矢量(LOS)。同时利用主星的星敏感器确定星体在惯性空间的姿态,将观测信息转换至惯性系下获得简化的观测方程,使用扩展卡尔曼滤波器(EKF)对卫星的轨道进行确定。介绍了具体导航方案的实现方法和技术细节,使用粒子群优化方法(PSO)对模型设计的相关参数进行优化,导航精度得到明显提高。实现位置确定精度10 m,速度确定精度0.01 m/s。为设计最优的编队导航系统参数提供了有效思路。  相似文献   

16.
Considering the KuaFu mission, state of the energy release of substorm and storm is simply presented and it’s improvements by KuaFu mission are investigated. The KuaFu mission will provide us an opportunity to improve our understanding of the energy release during the storm and the substorms. The two KuaFu-B satellites flying in 180° phase-lagged formation in a polar orbit will allow synoptic observations of the auroral oval, central plasma sheet, ring current and other regions. It can monitor the polar region 24/7 continuously. The advantage of the KuaFu mission is to provide the data during all phases of storm and substorm time that can be used to study the global energy release during all phases continuously. The data from auroral imager and other in-situ instruments on board KuaFu-B can be used to study the auroral dynamics and Joule heating during a storm and substorm. The data from the neutral atom imager instrument can be used to study the dynamics and the energy release in the ring current region from sudden commencement to complete storm recovery. Furthermore the data from KuaFu-A, which is around L1 point, can be used to study the interplanetary conditions along with the data from the plasma sheet to study the triggering process and energy release during a substorm. So, KuaFu mission with its continuous time monitoring facilities would enable us to make much progress towards solving the underlying problems.  相似文献   

17.
卫星编队飞行相对轨道动力学模型的比较及选用   总被引:1,自引:0,他引:1  
基于动力学方法推导了几种编队飞行相对轨道动力学模型.分析比较了引力项线性化以及J2摄动引起的模型误差的数量级,给出了模型选取的参考准则以及适用条件,分析了不同模型的适用性.最后选取太阳同步轨道和静止轨道作为数值算例,选取合适的相对轨道动力学模型,验证模型选取准则的有效性.仿真结果表明一定范围内考虑^摄动能提高精度,而超出一定范围J2的引入只会增加复杂性,因此提出的模型选取准则对相对轨道动力学模型的选取有一定的参考价值.  相似文献   

18.
This work develops a tension control strategy for deploying an underactuated spin-stable tethered satellite formation in the hub-spoke configuration. First, the Lagrange equation is used to model the spin-deployment dynamics of the tethered satellite formation. The central spacecraft is modeled as a rigid body, and the tethered subsatellites are simplified as lumped masses. Second, a pure tension controller has been proposed to suppress the tether libration motion in the deployment without thrusting at the subsatellites. A nonlinear sliding mode control is introduced in the tension controller for the underactuated system to suppress the periodic gravitational perturbations caused by the spinning hub-spoke tethered satellite formation. The unknown upper bounds of the perturbations are estimated by adaptive control law. The bounded stability of the closed-loop tension controller has been proved by the Lyapunov theory. Finally, numerical simulations validate the effectiveness and robustness of the proposed controller, i.e., tethers are fully deployed stably to the desired hub-spoke configuration.  相似文献   

19.
This paper introduces a linear model for spacecraft formation dynamics subject to attitude-dependent solar radiation pressure (SRP) disturbance, with the SRP model accounting for both absorption and specular/diffuse reflection. Spacecraft attitude is represented in modified Rodriguez parameters (MRPs), which also parameterize the orientation of individual facets for a spacecraft with fixed geometry. Compared to earlier work, this model incorporates analytic approximation of the SRP-perturbed chief orbit behavior in a manner enabling its use in applications with infrequent guidance updates. Control examples are shown for single-plate representations of hypothetical spacecraft with generally realistic optical parameters. The results demonstrate the validity of the model and the feasibility of SRP-based formation and rendezvous control in orbits around small bodies and in high orbits around the Earth such as the GEO belt.  相似文献   

20.
In collisionless plasmas, electron inertia has a strong influence on the formation of magnetic islands, through magnetic field line reconnection, and on the dynamics of coherent nonlinear structures such as magnetic vortices. We present a physical model for the nonlinear dynamics of such magnetic structures in configurations with a strong magnetic field. This model includes diamagnetic velocities and ion gyro-radius and electron inertia effects and yields the so-called Reduced MagnetoHydroDynamic (RMHD) equations in the appropriate limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号