首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航天技术   6篇
航天   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
Theses days, many nano- and micro-satellites are applied to several astronomy and remote sensing missions. In order to achieve mission requirements, these satellites must control the attitude precisely. A magnetic disturbance is one of the dominant sources of attitude disturbances. Therefore, this disturbance should be canceled in-orbit or on the ground to achieve the attitude strict requirements. This paper presents the effect of the magnetic disturbance to the attitude in nano- and micro-satellite missions and the sources of the residual magnetic moment of the satellites, which causes the magnetic disturbance. Then, the paper proposes a method to compensate the residual magnetic moment both in-orbit and in the design phase of the satellites. The research also focused on a time-varying residual magnetic moment. Finally, the method is applied to a micro-astrometry satellite as an example.  相似文献   
3.
We present results from the analysis of an XMM-Newton observation of the Seyfert 1 galaxy NGC 7469, the first high resolution X-ray spectrum of this source. The Reflection Grating Spectrometer (RGS) spectrum has several narrow absorption and emission lines of O, N, C and Ne, originating from gas at a range of ionisation parameters, from log ξ1.6 to log ξ−2 (where ξ has the units erg cm s−1). We demonstrate that the ionisation state of the warm emitter is consistent with that of the high-ionisation phase of the warm absorber, and compare the warm absorber in this object with those in other sources.  相似文献   
4.
Nano-satellites provide space access to broader range of satellite developers and attract interests as an application of the space developments. These days several new nano-satellite missions are proposed with sophisticated objectives such as remote-sensing and observation of astronomical objects. In these advanced missions, some nano-satellites must meet strict attitude requirements for obtaining scientific data or images. For LEO nano-satellite, a magnetic attitude disturbance dominates over other environmental disturbances as a result of small moment of inertia, and this effect should be cancelled for a precise attitude control. This research focuses on how to cancel the magnetic disturbance in orbit. This paper presents a unique method to estimate and compensate the residual magnetic moment, which interacts with the geomagnetic field and causes the magnetic disturbance. An extended Kalman filter is used to estimate the magnetic disturbance. For more practical considerations of the magnetic disturbance compensation, this method has been examined in the PRISM (Pico-satellite for Remote-sensing and Innovative Space Missions). This method will be also used for a nano-astrometry satellite mission. This paper concludes that use of the magnetic disturbance estimation and compensation are useful for nano-satellites missions which require a high accurate attitude control.  相似文献   
5.
6.
The Sun provides unique opportunities to study particle acceleration mechanisms using data from detectors placed on the Earth’s surface and on board spacecrafts. Particles may gain high energies by several physical mechanisms. Differentiating between these possibilities is a fundamental problem of cosmic ray physics. Energetic neutrons provide us with information that keeps the signatures of the acceleration site. A summary of some representative solar neutron events observed on the Earth’s surface, including associated X and γ-ray observations from spacecrafts is presented. We discuss evidence of acceleration of particles by the Sun to energies up to several tens of GeV. In addition, a recent solar neutron event that occurred on September 7th 2005 and detected by several observatories at Earth is analyzed in detail.  相似文献   
7.
Relativistic neutrons were observed by the neutron monitors at Mt. Chacaltaya and Mexico City and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in association with an X17.0 flare on 2005 September 7. The neutron signal continued for more than 20 min with high statistical significance. Intense emissions of γ-rays were also registered by INTEGRAL, and during the decay phase by RHESSI. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. [Hua, X.-M., Kozlovsky, B., Lingenfelter, R.E. et al. Angular and energy-dependent neutron emission from solar flare magnetic loops, Astrophys. J. Suppl. Ser. 140, 563–579, 2002], and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch-angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the γ-ray line emission and that ions were continuously accelerated at the emission site.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号