首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
航天技术   7篇
航天   2篇
  2012年   1篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  1974年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Satellite systems continue to play an important role in the booming market for communication and broadcasting services, driving up demand for use of the orbit/spectrum resource. Studies are required to address the problem of orbit capacity and find ways of making more efficient use of it, to avoid a situation in which there is not enough orbit/spectrum resource to cater for the development of future satellite networks. It is argued that, as far as satellite networks are concerned, the current international regulatory regime governing the use of the spectrum has significant shortcomings, which have a cost, in terms of resources and time, and make investment in satellite projects less attractive. An approach is proposed for improving efficiency of the use of the orbit/spectrum through the introduction of economic methods, to supplement the existing technical and regulatory regime. A spectrum pricing method is proposed for satellite communication systems.  相似文献   
2.
近地磁尾准无碰撞磁重联事件   总被引:2,自引:2,他引:2  
综合分析了ClusterⅡ-C1飞船在2001年9月15日飞越地球磁尾等离子体片区的热离子和磁场观测资料。结果表明,约在0340-0440UT时间期间,资料多次呈现出较强的尾向离子流(VXGSM<0),明显的南向磁场分量(BZGSM<0),以及明显的晨-昏向磁场分量BYGSM等特征。由此可以推断,在磁尾等离子体片中,在径向方向XGSE>-18.6Re范围内,可能发生了多次磁重联事件,整个事件持续期约1h。磁重联事件的观测特征与准无(或半)碰撞磁重联理论的基本图像符合一致,因此这些事件应当是准无碰撞磁重联事件。  相似文献   
3.
The four identical Cluster spacecraft, launched in 2000, orbit the Earth in a tetrahedral configuration and on a highly eccentric polar orbit (4–19.6 RE). This allows the crossing of critical layers that develop as a result of the interaction between the solar wind and the Earth’s magnetosphere. Since 2004 the Chinese Double Star TC-1 and TC-2 spacecraft, whose payload comprise also backup models of instruments developed by European scientists for Cluster, provided two additional points of measurement, on a larger scale: the Cluster and Double Star orbits are such that the spacecraft are almost in the same meridian, allowing conjugate studies. The Cluster and Double Star observations during the 2005 and 2006 extreme solar events are presented, showing uncommon plasma parameters values in the near-Earth solar wind and in the magnetosheath. These include solar wind velocities up to ∼900 km s−1 during an ICME shock arrival, accompanied by a sudden increase in the density by a factor of ∼5 and followed by an enrichment in He++ in the secondary front of the ICME. In the magnetosheath ion density values as high as 130 cm−3 were observed, and the plasma flow velocity there reached values even higher than the typical solar wind velocity. These resulted in unusual dayside magnetosphere compression, detection of penetrating high-energy particles in the magnetotail, and ring current development following several successive injections of energetic particles in the inner magnetosphere, which “washed out” the previously formed nose-like ion structures.  相似文献   
4.
5.
Double cusps have been observed on a few occasions by polar orbiting spacecraft and ground-based observatories. The four Cluster spacecraft observed two distinct regions, showing characteristics of a double cusp, during a mid-altitude cusp pass on 7 August 2004. The Wind spacecraft detected a southward turning of the Interplanetary Magnetic Field (IMF) at the beginning of the cusp crossings and IMF–Bz stayed negative throughout. Cluster 4 observed a high energy step in the ion precipitation around 1 keV on the equatorward side of the cusp and a dense ion population in the cusp centre. Cluster 1, entering the cusp around 1 min later, observed only a partial ion dispersion with a low energy cutoff reaching 100 eV, together with the dense ion population in the cusp centre. About 9 min later, Cluster 3 entered the cusp and observed full ion dispersion from a few keV down to around 50 eV, together with the dense ion population in the centre of the cusp. The ion flow was directed poleward and eastward in the step/dispersion, whereas in the centre of the cusp the flow was directed poleward and westward. In addition the altitude of the source region of ion injection in the step/dispersion was found 50% larger than in the cusp centre. This event could be explained by the onset of dayside reconnection when the IMF turned southward. The step would be the first signature of component reconnection near the subsolar point, and the injection in the centre of the cusp a result of anti-parallel reconnection in the northern dusk side of the cusp. A three-dimensional magnetohydrodynamic (MHD) simulation is used to display the topology of the magnetic field and locate the sources of the ions during the event.  相似文献   
6.
7.
We reported the results of our investigations of wave activity in high-frequency range performed on board CLUSTER spacecraft in the middle-altitude cusp region, around 5 RE during August and September 2002. Our analysis was mainly based on the registration gathered by the WHISPER instrument (Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation). For a better understanding of the processes of wave-particle interaction and in order to understand the general plasma conditions in the cusp region, we also included in our analysis the data registered by the STAFF (Spatio-Temporal Analysis of Field Fluctuation experiment) instrument and the CIS (Ion Spectrometry experiment) instrument. These observations were carried out during different geomagnetic activity; under quiet conditions and during magnetic storm period. The space plasma is characterised by the ratio of plasma frequency to electron gyrofrequency, in this case, the local plasma frequency was, mainly, a little greater than the electron plasma, but it was also frequently observed that these two characteristic frequencies were not very different from one another. The whistler waves, electron-cyclotron waves, electron-acoustic waves and Langmuir waves have been detected when the spacecraft was crossing the middle-altitude cusp region. We suggested that the majority of those waves were generated by electron beams. For a better understanding the plasma conditions in the low and middle-altitude cusp region the past FREJA wave data results are used to describe typical wave activity detected in the low-altitude cusp region. The aim of this paper is to discuss, on the basis of a few chosen representative examples, the property of typical high wave activity detected in the lower part of cusp region.  相似文献   
8.
We present a unified accretion–ejection picture that explains the different spectral state of Black Hole X-ray binaries (BHXrB) from radio to X/γ-rays. In this view, the central region of BHXrB has a multi-flow configuration which consists in (1) an outer standard accretion disc, (2) an inner magnetized accretion disc driving, (3) a self-collimated electron–proton MHD jet, surrounding and (4) a relativistic electron–positron beam when adequate conditions are met. This picture provides a simple and unified explanation to the various canonical spectral states of BH X-ray binaries, by varying the transition radius rJ between the inner disc driving jets and the outer standard disc. In this framework, large rJ correspond to Quiescent and Hard states while small rJ correspond to Thermal Dominant ones. In between these two extremes, rJ can reach values that switches on the pair cascade process giving birth to a relativistic electron–positron beam. This would correspond to the bright intermediate state.  相似文献   
9.
A preliminary model is proposed to describe quantitatively the position and movement of cusp equatorward boundary. This integrated model, consisting of an empirical model of the magnetopause and a compressed dipolar model of Open/Closed field line, connects quantitatively the solar wind conditions, subsolar magnetopause and cusp equatorward boundary. It is shown that the increasing solar wind dynamic pressure and the increasing southward Interplanetary Magnetic Field (IMF) component drive the magnetopause to move inward and the cusp equatorward. This model is adopted to interpret quantitatively the cusp movement of August 14, 2001 observed by Cluster. The results show that the subsolar magnetopause moved earthward from 10.7 He to 9.0 Re during the period of 002300-002800 UT, and correspondingly the cusp equatorward boundary shifted equatorward. The observations of Cluster C1 and C4 show the cusp equatorward boundary that Cluster Cl and C4 were crossing during same interval moved equatorward by 4.6°. The cusp equatorward boundary velocity computed in the theoretical model (10.7km/s) is in good agreement with the observed value (9.4km/s) calculated from the data of CIS of Cluster C4 and C1.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号