首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
航空   8篇
航天技术   7篇
航天   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   4篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
排序方式: 共有16条查询结果,搜索用时 7 毫秒
1.
There are many geometric calibration methods for “standard” cameras. These methods, however, cannot be used for the calibration of telescopes with large focal lengths and complex off-axis optics. Moreover, specialized calibration methods for the telescopes are scarce in literature. We describe the calibration method that we developed for the Colour and Stereo Surface Imaging System (CaSSIS) telescope, on board of the ExoMars Trace Gas Orbiter (TGO). Although our method is described in the context of CaSSIS, with camera-specific experiments, it is general and can be applied to other telescopes. We further encourage re-use of the proposed method by making our calibration code and data available on-line.  相似文献   
2.
The successful long-duration radiation measurements performed by the VIRTIS instrument aboard ESA’s Venus Express spacecraft have provided an excellent collection of atmospheric and surface data that stand out due to their high temporal and spatial coverage of the planet and due to a high diversity of measurement and environmental conditions.  相似文献   
3.
GNSS (Global Navigation Satellite Systems)-based attitude determination is an important field of study, since it is a valuable technique for the orientation estimation of remote sensing platforms. To achieve highly accurate angular estimates, the precise GNSS carrier phase observables must be employed. However, in order to take full advantage of the high precision, the unknown integer ambiguities of the carrier phase observables need to be resolved. This contribution presents a GNSS carrier phase-based attitude determination method that determines the integer ambiguities and attitude in an integral manner, thereby fully exploiting the known body geometry of the multi-antennae configuration. It is shown that this integral approach aids the ambiguity resolution process tremendously and strongly improves the capacity of fixing the correct set of integer ambiguities. In this contribution, the challenging scenario of single-epoch, single-frequency attitude determination is addressed. This guarantees a total independence from carrier phase slips and losses of lock, and it also does not require any a priori motion model for the platform. The method presented is a multivariate constrained version of the popular LAMBDA method and it is tested on data collected during an airborne remote sensing campaign.  相似文献   
4.
The sodium emissions have been observed in several new and long-period comets, but only for comet Mrkos 1957d (Nguyen-Huu-Doan, 1960) was a sodium tail detected on a Schmidt plate obtained with a objective prism. Comet Hale-Bopp 1995 O1 offered the first great opportunity to get an image of a long sodium tail. It was more than 3 × 107 km long, defined as a third type of tail, as it was composed only of neutral atoms (Cremonese, 1997a). After the discovery of the sodium tail another team announced it had observed it (Wilson et al., 1998), but it was soon realized they had seen a different sodium tail. The image of Wilson et al. (1998) showed a very diffuse sodium tail superimposed on the dust tail, most likely due to the release of sodium atoms from dust particles. It was different from the narrow tail found in the image obtained by the European Hale-Bopp Team and its position angle was 15-20 degrees lower. Spectroscopic observations have been performed on the dust tail, at different beta values, and along the narrow sodium tail showing that the sodium emissions had very different line profiles. The analysis of these profiles will yield important insights into the sources in the inner coma and in the dust tail. This work will report on preliminary analysis of both sodium tails and emphasize the high-resolution spectroscopy performed on the dust tail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
5.
Mercury’s surface is thought to be covered with highly space-weathered silicate material. The regolith is composed of material accumulated during the time of planetary formation, and subsequently from comets, meteorites, and the Sun. Ground-based observations indicate a heterogeneous surface composition with SiO2 content ranging from 39 to 57 wt%. Visible and near-infrared spectra, multi-spectral imaging, and modeling indicate expanses of feldspathic, well-comminuted surface with some smooth regions that are likely to be magmatic in origin with many widely distributed crystalline impact ejecta rays and blocky deposits. Pyroxene spectral signatures have been recorded at four locations. Although highly space weathered, there is little evidence for the conversion of FeO to nanophase metallic iron particles (npFe0), or “iron blebs,” as at the Moon. Near- and mid-infrared spectroscopy indicate clino- and ortho-pyroxene are present at different locations. There is some evidence for no- or low-iron alkali basalts and feldspathoids. All evidence, including microwave studies, point to a low iron and low titanium surface. There may be a link between the surface and the exosphere that may be diagnostic of the true crustal composition of Mercury. A structural global dichotomy exists with a huge basin on the side not imaged by Mariner 10. This paper briefly describes the implications for this dichotomy on the magnetic field and the 3 : 2 spin : orbit coupling. All other points made above are detailed here with an account of the observations, the analysis of the observations, and theoretical modeling, where appropriate, that supports the stated conclusions.  相似文献   
6.
Traditionally in multi-spacecraft missions (e.g. formation flying, rendezvous) the GNSS-based relative positioning and attitude determination problem are treated as independent. In this contribution we will investigate the possibility to use multi-antenna data from each spacecraft, not only for attitude determination, but also to improve the relative positioning between spacecraft. Both for ambiguity resolution and accuracy of the baseline solution, we will show the theoretical improvement achievable as a function of the number of antennas on each platform. We concentrate on ambiguity resolution as the key to precise relative positioning and attitude determination and will show the theoretical limit of this kind of approach. We will use mission parameters of the European Proba-3 satellites in a software-based algorithm verification and a hardware-in-the-loop simulation. The software simulations indicated that this approach can improve single epoch ambiguity resolution up to 50% for relative positioning applying the typical antenna configurations for attitude determination. The hardware-in-the-loop simulations show that for the same antenna configurations, the accuracy of the relative positioning solution can improve up to 40%.  相似文献   
7.
General relativity (GR) can be probed by several tests in the weak gravitational field limit. On the contrary, very poor information exists about GR tests in strong gravitational fields. Here, we focus on the interaction of light rays with the strong gravitational field of a massive black hole and show that relativistic images may form. Hence, we calculate the shapes of shadows (mirages) forming just near BH horizons and discuss the possibility to estimate the black hole parameters (mass, spin and charge) by future astrometric missions. In 2007, the Radioastron space telescope will be launched and it will allow to evaluate those parameters for the black hole hosted at the center of our Galaxy.  相似文献   
8.
9.
GNSS-based precise relative positioning between spacecraft normally requires dual frequency observations, whereas attitude determination of the spacecraft, mainly due to the stronger model given by the a priori knowledge of the length and geometry of the baselines, can be performed precisely using only single frequency observations. When the Galileo signals will come available, the number of observations at the L1 frequency will increase as we will have a GPS and Galileo multi-constellation. Moreover the L1 observations of the Galileo system and modernized GPS are more precise than legacy GPS and this, combined with the increased number of observations, will result in a stronger model for single frequency relative positioning. In this contribution we will develop an even stronger model by combining the attitude determination problem with relative positioning. The attitude determination problem will be solved by the recently developed Multivariate Constrained (MC-) LAMBDA method. We will do this for each spacecraft and use the outcome for an ambiguity constrained solution on the baseline between the spacecraft. In this way the solution for the unconstrained baseline is bootstrapped from the MC-LAMBDA solutions of each spacecraft in what is called: multivariate bootstrapped relative positioning. The developed approach will be compared in simulations with relative positioning using a single antenna at each spacecraft (standard LAMBDA) and a vectorial bootstrapping approach. In the simulations we will analyze single epoch, single frequency success rates as the most challenging application. The difference in performance for the approaches for single epoch solutions, is a good indication of the strength of the underlying models. As the multivariate bootstrapping approach has a stronger model by applying information on the geometry of the constrained baselines, for applications with large observation noise and limited number of observations this will result in a better performance compared to the vectorial bootstrapping approach. Compared with standard LAMBDA, it can reach a 59% higher success rate for ambiguity resolution. The higher success rate on the unconstrained baseline between the platforms comes without extra computational load as the constrained baseline(s) problem has to be solved for attitude determination and this information can be applied for relative positioning.  相似文献   
10.
MEMORIS (MErcury Moderate Resolution Imaging System) is a wide angle camera (WAC) concept for the ESA mission BepiColombo. The main scientific objectives consist of observing the whole surface of Mercury in the spectral range of 400–1000 nm, with a spatial resolution of 50 m per pixel at peri-Herm (400 km) and 190 m at apo-Herm (1500 km). It will obtain a map of Mercury in stereo mode allowing the determination of a digital elevation model with a panchromatic filter through two different channels. The camera will also perform multispectral imaging of the surface with a set of 8–12 different broad band filters. A third channel dedicated to limb observations will provide images of the atmosphere. MEMORIS will thus monitor the surface and the atmosphere during the entire mission, providing a unique opportunity to study the relationship between surface regions and the atmosphere, as suggested by ground-based observations and theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号