首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   6篇
  2008年   1篇
  2001年   3篇
  1997年   1篇
  1995年   1篇
排序方式: 共有6条查询结果,搜索用时 545 毫秒
1
1.
Ergun  R.E.  Carlson  C.W.  Mozer  F.S.  Delory  G.T.  Temerin  M.  McFadden  J.P.  Pankow  D.  Abiad  R.  Harvey  P.  Wilkes  R.  Primbsch  H.  Elphic  R.  Strangeway  R.  Pfaff  R.  Cattell  C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.  相似文献   
2.
The Fast Auroral SnapshoT (FAST) satellite was launched by a Pegasus XL on August 21, 1996. This was the second launch in the NASA SMall EXplorer (SMEX) program. Early in the mission planning the decision was made to have the University of California at Berkeley Space Sciences Laboratory (UCB-SSL) mechanical engineering staff provide all of the spacecraft appendages, in order to meet the short development schedule, and to insure compatibility. This paper describes the design development, testing and on-orbit deployment of these boom systems: the 2 m carbon fiber magnetometer booms, the 58 m tip to tip spin-plane wire booms, and the 7 m dipole axial stiff booms.  相似文献   
3.
Harvey  P.R.  Curtis  D.W.  Heetderks  H.D.  Pankow  D.  Rauch-Leiba  J.M.  Wittenbrock  S.K.  McFadden  J.P. 《Space Science Reviews》2001,98(1-2):113-149
The Fast Auroral Snapshot Explorer (FAST) is the second of the Small Explorer Missions which are designed to provide low cost space flight opportunities to the scientific community. FAST performs high time resolution measurements of the auroral zone in order to resolve the microphysics of the auroral acceleration region. Its primary science objectives necessitate high data volume, real-time command capability, and control of science data collection on suborbital time scales. The large number of instruments requires a sophisticated Instrument Data Processing Unit (IDPU) to organize the data into the 1 Gbit solid state memory. The large data volume produced by the instruments requires a flexible memory capable of both high data rate snapshots (12 Mbit s–1) and coarser survey data collection (0.5 Mbit s–1) to place the high rate data in context. In order to optimize the science, onboard triggering algorithms select the snapshots based upon data quality. This paper presents a detailed discussion of the hardware and software design of the FAST IDPU, describing the innovative design that has been essential to the FAST mission's success.  相似文献   
4.
The Polar satellite carries a system of four wire booms in the spacecraft spin plane and two rigid booms along the spin axis. Each of the booms has a spherical sensor at its tip along with nearby guard and stub surfaces whose potentials relative to that of their sphere are controlled by associated electronics. The potential differences between opposite sphere pairs are measured to yield the three components of the DC to >1 MHz electric field. Spheres can also be operated in a mode in which their collected current is measured to give information on the plasma density and its fluctuations. The scientific studies to be performed by this experiment as well as the mechanical and electrical properties of the detector system are described.  相似文献   
5.
THE ELECTRIC FIELD AND WAVE EXPERIMENT FOR THE CLUSTER MISSION   总被引:1,自引:0,他引:1  
The electric-field and wave experiment (EFW) on Cluster is designed to measure the electric-field and density fluctuations with sampling rates up to 36000 samples s-1. Langmuir probe sweeps can also be made to determine the electron density and temperature. The instrument has several important capabilities. These include (1) measurements of quasi-static electric fields of amplitudes up to 700 mV m-1 with high amplitude and time resolution, (2) measurements over short periods of time of up to five simualtaneous waveforms (two electric signals and three magnetic signals from the seach coil magnetometer sensors) of a bandwidth of 4 kHz with high time resolution, (3) measurements of density fluctuations in four points with high time resolution. Among the more interesting scientific objectives of the experiment are studies of nonlinear wave phenomena that result in acceleration of plasma as well as large- and small-scale interferometric measurements. By using four spacecraft for large-scale differential measurements and several Langmuir probes on one spacecraft for small-scale interferometry, it will be possible to study motion and shape of plasma structures on a wide range of spatial and temporal scales. This paper describes the primary scientific objectives of the EFW experiment and the technical capabilities of the instrument.  相似文献   
6.
The five “Time History of Events and Macroscale Interactions during Substorms” (THEMIS) micro-satellites launched on a common carrier by a Delta II, 7925 heavy, on February 17, 2007. This is the fifth launch in the NASA MeDIum class EXplorer (MIDEX) program. In the mission proposal the decision was made to have the University of California Berkeley Space Sciences Laboratory (UCB-SSL) mechanical engineering staff provide all of the spacecraft appendages, in order to meet the short development schedule, and to insure compatibility. This paper describes the systems engineering, design, development, testing, and on-orbit deployment of these boom systems that include: the 1 and 2 meter carbon fiber composite magnetometer booms, the 40 and 50 m tip to tip orthogonal spin-plane wire boom pairs, and the 6.3 m dipole stiff axial booms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号