首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   6篇
  2011年   1篇
  2005年   1篇
  2002年   2篇
  1999年   1篇
  1996年   1篇
排序方式: 共有6条查询结果,搜索用时 703 毫秒
1
1.
Recursive time-to-go estimation for homing guidance missiles   总被引:8,自引:0,他引:8  
This paper addresses the problem of computing accurate time-to-go estimates, which is an important issue in implementing various optimal guidance laws developed for missiles of time-varying velocity. A recursive time-to-go computation method which updates the time-to-go in a noniterative way is presented. The recursive method includes an error compensation feature which explicitly computes the time-to-go error produced by nonzero initial heading errors. The proposed method is simple and straightforward to implement for any missile velocity profiles. Various numerical examples show that the proposed method works effectively for optimal guidance laws as well as proportional navigation and augmented proportional navigation  相似文献   
2.
A procedure to compute guidance commands for controlling the relative geometry of multiple unmanned aerial vehicles (UAVs) in formation flight is proposed. The concepts of branch, global leader, and local leader/follower are used to represent the whole formation geometry. A positive-definite function defined in terms of the formation error is then introduced and the Lyapunov stability theorem is used to obtain the cascade type guidance law. This scheme leads to the synchronized flight of all UAVs while maintaining formation geometry. The results of a high fidelity nonlinear simulation of a reconnaissance and surveillance mission example are presented to show the effectiveness of the proposed guidance law.  相似文献   
3.
A new input estimation technique for target tracking problem is proposed. Conventional input estimation techniques assume that the target maneuver level is constant within the detection window, which has been the major drawback of the techniques. The proposed technique is developed to overcome this drawback by modeling the target maneuver as a linear combination of some basic time functions. The resulting algorithm has a generalized formulation including earlier works on input estimation. A detection performance of the proposed algorithm is analyzed by investigating the detection sensitivity according to the selection of maneuver models and other design parameters such as the detection window size, measurement noise level, and sampling step size. A computer simulation study shows that the estimation performance of the proposed algorithm is comparable to Bogler's input estimation method while the computation time is greatly reduced  相似文献   
4.
Stability characteristics of proportional navigation (PN) guidance are analyzed by using the short-time stability criterion which is extended here to accommodate time-varying state weights and time-varying bounds of the state norm. As short-time stability is defined over a specified time interval, its application to the stability analysis of a homing guidance loop that operates up to a finite time gives more accurate results than previous studies. Furthermore, within the framework of short-time stability, zero effort miss and acceleration command, which are the most important variables determining guidance performance, can be directly related with guidance loop stability. An application to a PN guidance loop with a 1st-order missile/autopilot time lag shows that the stability condition based on short-time stability is less conservative than the previous results based on hyperstability and Popov stability  相似文献   
5.
This paper proposes a new autonomous stationkeeping system suitable for geostationary satellite operation and presents the results of the computer simulations conducted to verify the proposed system. The proposed on-board stationkeeping system receives pseudo-range signal from the ground equipments located at two different positions with a long baseline, determines the orbit error in real-time, and generates the orbit control command. To minimize the complexity of the on-board stationkeeping logic and to improve reliability, a simple orbit controller has been designed, which generates a series of control signal making the orbit roughly follow the predetermined reference range data. The reference range data are assumed to be generated through a ground based computer simulation and embedded or uploaded with time tag. Finally, the performance of the proposed system has been verified through computer simulations.  相似文献   
6.
A suboptimal midcourse guidance law is obtained for interception of free-fall targets in the three-dimensional (3D) space. Neural networks are used to approximate the optimal feedback strategy suitable for real-time implementation. The fact that the optimal trajectory in the 3D space does not deviate much from a vertical plane justifies the use of the two-dimensional (2D) neural network method previously studied. To regulate the lateral errors in the missile motion produced by the prediction error of the intercept point, the method of feedback linearization is employed. Computer simulations confirm the superiority of the proposed scheme over linear quadratic regulator guidance and proportional navigation guidance as well as its approximating capability of the optimal trajectory in the 3D space  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号