首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   7篇
  2022年   1篇
  2018年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Mercury’s surface is thought to be covered with highly space-weathered silicate material. The regolith is composed of material accumulated during the time of planetary formation, and subsequently from comets, meteorites, and the Sun. Ground-based observations indicate a heterogeneous surface composition with SiO2 content ranging from 39 to 57 wt%. Visible and near-infrared spectra, multi-spectral imaging, and modeling indicate expanses of feldspathic, well-comminuted surface with some smooth regions that are likely to be magmatic in origin with many widely distributed crystalline impact ejecta rays and blocky deposits. Pyroxene spectral signatures have been recorded at four locations. Although highly space weathered, there is little evidence for the conversion of FeO to nanophase metallic iron particles (npFe0), or “iron blebs,” as at the Moon. Near- and mid-infrared spectroscopy indicate clino- and ortho-pyroxene are present at different locations. There is some evidence for no- or low-iron alkali basalts and feldspathoids. All evidence, including microwave studies, point to a low iron and low titanium surface. There may be a link between the surface and the exosphere that may be diagnostic of the true crustal composition of Mercury. A structural global dichotomy exists with a huge basin on the side not imaged by Mariner 10. This paper briefly describes the implications for this dichotomy on the magnetic field and the 3 : 2 spin : orbit coupling. All other points made above are detailed here with an account of the observations, the analysis of the observations, and theoretical modeling, where appropriate, that supports the stated conclusions.  相似文献   
2.
3.
The general scientific objective of the ASPERA-3 experiment is to study the solar wind – atmosphere interaction and to characterize the plasma and neutral gas environment with within the space near Mars through the use of energetic neutral atom (ENA) imaging and measuring local ion and electron plasma. The ASPERA-3 instrument comprises four sensors: two ENA sensors, one electron spectrometer, and one ion spectrometer. The Neutral Particle Imager (NPI) provides measurements of the integral ENA flux (0.1–60 keV) with no mass and energy resolution, but high angular resolution. The measurement principle is based on registering products (secondary ions, sputtered neutrals, reflected neutrals) of the ENA interaction with a graphite-coated surface. The Neutral Particle Detector (NPD) provides measurements of the ENA flux, resolving velocity (the hydrogen energy range is 0.1–10 keV) and mass (H and O) with a coarse angular resolution. The measurement principle is based on the surface reflection technique. The Electron Spectrometer (ELS) is a standard top-hat electrostatic analyzer in a very compact design which covers the energy range 0.01–20 keV. These three sensors are located on a scanning platform which provides scanning through 180 of rotation. The instrument also contains an ion mass analyzer (IMA). Mechanically IMA is a separate unit connected by a cable to the ASPERA-3 main unit. IMA provides ion measurements in the energy range 0.01–36 keV/charge for the main ion components H+, He++, He+, O+, and the group of molecular ions 20–80 amu/q. ASPERA-3 also includes its own DC/DC converters and digital processing unit (DPU).  相似文献   
4.
It has been speculated that the composition of the exosphere is related to the composition of Mercury’s crustal materials. If this relationship is true, then inferences regarding the bulk chemistry of the planet might be made from a thorough exospheric study. The most vexing of all unsolved problems is the uncertainty in the source of each component. Historically, it has been believed that H and He come primarily from the solar wind (Goldstein, B.E., et al. in J. Geophys. Res. 86:5485–5499, 1981), Na and K come from volatilized materials partitioned between Mercury’s crust and meteoritic impactors (Hunten, D.M., et al. in Mercury, pp. 562–612, 1988; Morgan, T.H., et al. in Icarus 74:156–170, 1988; Killen, R.M., et al. in Icarus 171:1–19, 2004b). The processes that eject atoms and molecules into the exosphere of Mercury are generally considered to be thermal vaporization, photon-stimulated desorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its own temporal and spatial dependence. The exosphere is strongly influenced by Mercury’s highly elliptical orbit and rapid orbital speed. As a consequence the surface undergoes large fluctuations in temperature and experiences differences of insolation with longitude. Because there is no inclination of the orbital axis, there are regions at extreme northern and southern latitudes that are never exposed to direct sunlight. These cold regions may serve as traps for exospheric constituents or for material that is brought in by exogenic sources such as comets, interplanetary dust, or solar wind, etc. The source rates are dependent not only on temperature and composition of the surface, but also on such factors as porosity, mineralogy, and space weathering. They are not independent of each other. For instance, ion impact may create crystal defects which enhance diffusion of atoms through the grain, and in turn enhance the efficiency of PSD. The impact flux and the size distribution of impactors affects regolith turnover rates (gardening) and the depth dependence of vaporization rates. Gardening serves both as a sink for material and as a source for fresh material. This is extremely important in bounding the rates of the other processes. Space weathering effects, such as the creation of needle-like structures in the regolith, will limit the ejection of atoms by such processes as PSD and ion-sputtering. Therefore, the use of laboratory rates in estimates of exospheric source rates can be helpful but also are often inaccurate if not modified appropriately. Porosity effects may reduce yields by a factor of three (Cassidy, T.A., and Johnson, R.E. in Icarus 176:499–507, 2005). The loss of all atomic species from Mercury’s exosphere other than H and He must be by non-thermal escape. The relative rates of photo-ionization, loss of photo-ions to the solar wind, entrainment of ions in the magnetosphere and direct impact of photo-ions to the surface are an area of active research. These source and loss processes will be discussed in this chapter.  相似文献   
5.
Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa’s tenuous atmosphere and on the exchange of material between the moon’s surface and Jupiter’s magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon’s icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa’s tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA’s JUpiter ICy moons Explorer (JUICE) mission, and NASA’s Europa Clipper mission). We review the existing models of Europa’s tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.  相似文献   
6.
Mercury is a poorly known planet, since the only space-based information comes from the three fly-bys performed in 1974 by the Mariner 10 spacecraft. Ground-based observations also provided some interesting results, but they are particularly difficult to obtain due to the planet’s proximity to the Sun. Nevertheless, the fact that the planet’s orbit is so close to the Sun makes Mercury a particularly interesting subject for extreme environmental conditions. Among a number of crucial scientific topics to be addressed, Mercury’s exosphere, its interaction with the solar wind and its origin from the surface of the planet, can provide important clues about planetary evolution. In fact, the Hermean exosphere is continuously eroded and refilled by these interactions, so that it would be more proper to consider the Hermean environment as a single, unified system – surface-exosphere-magnetosphere. These three parts are indeed strongly linked to each other. In recent years, the two missions scheduled to explore the iron planet, the NASA MESSENGER mission (launched in March 2004) and the ESA cornerstone mission (jointly with JAXA) BepiColombo (to be launched in 2012), have stimulated new interest in the many unresolved mysteries related to it. New ground-based observations, made possible by new technologies, have been obtained, and new simulation studies have been performed. In this paper some old as well as the very latest observations and studies related to the surface-exosphere-magnetosphere system are reviewed, outlining the investigations achievable by the planned space-based observations. This review intends to support the studies, in preparation of future data, and the definition of specific instrumentation.  相似文献   
7.
Leblanc  F.  Schmidt  C.  Mangano  V.  Mura  A.  Cremonese  G.  Raines  J. M.  Jasinski  J. M.  Sarantos  M.  Milillo  A.  Killen  R. M.  Massetti  S.  Cassidy  T.  Vervack  R. J.  Kameda  S.  Capria  M. T.  Horanyi  M.  Janches  D.  Berezhnoy  A.  Christou  A.  Hirai  T.  Lierle  P.  Morgenthaler  J. 《Space Science Reviews》2022,218(1):1-22
Space Science Reviews - As a hyperspectral imager aboard the orbiter “HX-1” of China’s first Mars mission, the Mars Mineralogical Spectrometer (MMS) is designed with hyperspectral...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号