首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   0篇
航空   146篇
航天技术   9篇
航天   11篇
  2018年   66篇
  2017年   37篇
  2016年   2篇
  2015年   3篇
  2013年   4篇
  2012年   1篇
  2011年   11篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   5篇
  2005年   2篇
  2004年   3篇
  2002年   1篇
  2001年   4篇
  1997年   1篇
  1993年   4篇
  1992年   2篇
排序方式: 共有166条查询结果,搜索用时 390 毫秒
1.
The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries.  相似文献   
2.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
3.
4.
Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.  相似文献   
5.
The HP3 instrument on the InSight lander mission will measure subsurface temperatures and thermal conductivities from which heat flow in the upper few meters of the regolith at the landing site will be calculated. The parameter to be determined is steady-state conductive heat flow, but temperatures may have transient perturbations resulting from surface temperature changes and there could be a component of thermal convection associated with heat transport by vertical flow of atmospheric gases over the depth interval of measurement. The experiment is designed so that it should penetrate to a depth below which surface temperature perturbations are smaller than the required measurement precision by the time the measurements are made. However, if the measurements are delayed after landing, and/or the probe does not penetrate to the desired depth, corrections may be necessary for the transient perturbations. Thermal convection is calculated to be negligible, but these calculations are based on unknown physical properties of the Mars regolith. The effects of thermal convection should be apparent at shallow depths where transient thermal perturbations would be observed to deviate from conductive theory. These calculations were required during proposal review and their probability of predicting a successful measurement a prerequisite for mission approval. However, their uncertainties lies in unmeasured physical parameters of the Mars regolith.  相似文献   
6.
Using the Earth albedo model and the orbital dynamics model developed as part of the First Look Project (Fast Initial In-Orbit Identification of Scientific Satellites) the terrestrial albedo is evaluated considering the orbits of some scientific missions as Gravity Probe B, MICROSCOPE and STEP. The model of the Earth albedo is based on the reflectivity data measured by NASA’s Earth Probe satellite, which is part of the TOMS project (Total Ozone Mapping Spectrometer). The reflectivity data are available daily, on line at the TOMS website, and they fluctuate because of changes in clouds and ice coverage and seasonal changes. The data resolution partitions the Earth surface into a number of cells. The incident irradiance on each cell is used to calculate total radiant flux from the cell. With the radiant flux from each cell, the irradiance at the satellite is calculated.  相似文献   
7.
Thermodynamic conditions suggest that clathrates might exist on Mars. Despite observations which show that the dominant condensed phases on the surface of Mars are solid carbon dioxide and water ice, clathrates have been repeatedly proposed to play an important role in the distribution and total inventory of the planet’s volatiles. Here we review the potential consequences of the presence of clathrates on Mars. We investigate how clathrates could be a potential source for the claimed existence of atmospheric methane. In this context, plausible clathrate formation processes, either in the close subsurface or at the base of the cryosphere, are reviewed. Mechanisms that would allow for methane release into the atmosphere from an existing clathrate layer are addressed as well. We also discuss the proposed relationship between clathrate formation/dissociation cycles and how potential seasonal variations influence the atmospheric abundances of argon, krypton and xenon. Moreover, we examine several Martian geomorphologic features that could have been generated by the dissociation of extended subsurface clathrate layers. Finally we investigate the future in situ measurements, as well as the theoretical and experimental improvements that will be needed to better understand the influence of clathrates on the evolution of Mars and its atmosphere.  相似文献   
8.
SWEA, the solar wind electron analyzers that are part of the IMPACT in situ investigation for the STEREO mission, are described. They are identical on each of the two spacecraft. Both are designed to provide detailed measurements of interplanetary electron distribution functions in the energy range 1~3000 eV and in a 120°×360° solid angle sector. This energy range covers the core or thermal solar wind plasma electrons, and the suprathermal halo electrons including the field-aligned heat flux or strahl used to diagnose the interplanetary magnetic field topology. The potential of each analyzer will be varied in order to maintain their energy resolution for spacecraft potentials comparable to the solar wind thermal electron energies. Calibrations have been performed that show the performance of the devices are in good agreement with calculations and will allow precise diagnostics of all of the interplanetary electron populations at the two STEREO spacecraft locations.  相似文献   
9.
Two orbits were selected in January–February 2006 when the separation between the Cluster spacecraft was large and mirror type magnetic field fluctuations were observed by all spacecraft in different regions of the terrestrial magnetosheath. Minimum variance analysis was applied to find the mirror type fluctuations, and the amplitude of the fluctuations was determined individually. Mirror mode structures are moving along the streamlines frozen in the plasma. A model was developed for the calculation of plasma flowtime from the bow shock to the observation point. The growth rate of the field strength perturbations was estimated by comparing the amplitudes of fluctuations observed simultaneously at distant locations (∼10,000 km) based on the assumption that δB ∼ exp(γt). The obtained growth rate values were about an order of magnitude smaller than those provided by linear models and they decreased in the inner regions of the magnetosheath, indicating some saturation in the growth of the waves when proceeding towards the magnetopause. The results of these two case studies suggest that mirror type fluctuations originate from the compression region downstream of the quasi-perpendicular bow shock, and the growth of the fluctuations cannot be described by linear approximations.  相似文献   
10.
The rapid rotation of the gas giant planets, Jupiter and Saturn, leads to the formation of magnetodisc regions in their magnetospheric environments. In these regions, relatively cold plasma is confined towards the equatorial regions, and the magnetic field generated by the azimuthal (ring) current adds to the planetary dipole, forming radially distended field lines near the equatorial plane. The ensuing force balance in the equatorial magnetodisc is strongly influenced by centrifugal stress and by the thermal pressure of hot ion populations, whose thermal energy is large compared to the magnitude of their centrifugal potential energy. The sources of plasma for the Jovian and Kronian magnetospheres are the respective satellites Io (a volcanic moon) and Enceladus (an icy moon). The plasma produced by these sources is globally transported outwards through the respective magnetosphere, and ultimately lost from the system. One of the most studied mechanisms for this transport is flux tube interchange, a plasma instability which displaces mass but does not displace magnetic flux—an important observational constraint for any transport process. Pressure anisotropy is likely to play a role in the loss of plasma from these magnetospheres. This is especially the case for the Jovian system, which can harbour strong parallel pressures at the equatorial segments of rotating, expanding flux tubes, leading to these regions becoming unstable, blowing open and releasing their plasma. Plasma mass loss is also associated with magnetic reconnection events in the magnetotail regions. In this overview, we summarise some important observational and theoretical concepts associated with the production and transport of plasma in giant planet magnetodiscs. We begin by considering aspects of force balance in these systems, and their coupling with the ionospheres of their parent planets. We then describe the role of the interaction between neutral and ionized species, and how it determines the rate at which plasma mass and momentum are added to the magnetodisc. Following this, we describe the observational properties of plasma injections, and the consequent implications for the nature of global plasma transport and magnetodisc stability. The theory of the flux tube interchange instability is reviewed, and the influences of gravity and magnetic curvature on the instability are described. The interaction between simulated interchange plasma structures and Saturn’s moon Titan is discussed, and its relationship to observed periodic phenomena at Saturn is described. Finally, the observation, generation and evolution of plasma waves associated with mass loading in the magnetodisc regions is reviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号