首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
  国内免费   2篇
航空   46篇
航天技术   12篇
综合类   1篇
航天   14篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   10篇
  2015年   3篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   6篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1973年   1篇
  1967年   1篇
排序方式: 共有73条查询结果,搜索用时 546 毫秒
1.
The fluxgate magnetometer experiment onboard the ROSETTA spacecraft aims to measure the magnetic field in the interaction region of the solar wind plasma with comet 67P/Churyumov-Gerasimenko. It consists of a system of two ultra light (about 28 g each ) triaxial fluxgate magnetometer sensors, mounted on the 1.5 m long spacecraft boom. The measurement range of each sensor is ±16384 nT with quantization steps of 31 pT. The magnetometer sensors are operated with a time resolution of up to 0.05 s, corresponding to a bandwidth of 0–10 Hz. This performance of the RPC-MAG sensors allows detailed analyses of magnetic field variations in the cometary environment. RPC-MAG furthermore is designed to study possible remnant magnetic fields of the nucleus, measurements which will be done in close cooperation with the ROSETTA lander magnetometer experiment ROMAP.  相似文献   
2.
Eagle-Picher Energy Products (EPEP) has been manufacturing and testing large lithium ion cells (up to 100-Ah) for several years. Recently, work has focused on the testing of different chemistries at variable temperatures and designing and fabricating 100-Ah cylindrical cells. For the aircraft application the largest concern is irreversible capacity loss at elevated temperatures (70°C). In contrast, for the aerospace application shelf-life and cycle life are critical. EPEP has found that the major contributor to the loss in low temperature performance due to high temperature testing, was the positive electrode. EPEP discuss recent results of variable temperature cycling and 100-Ah cell performance  相似文献   
3.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
4.
Imaging is the most widely applicable single means of exploring the outer planets and their satellites and also complements other planet-oriented instruments. Imaging generally is more effectively carried out from a three-axis stabilized spacecraft than from a spinning one.Both specific experimental and broader exploratory goals must be recognized. Photography of Jupiter from terrestrial telescopes has revealed features which were neither predictable or predicted. Close-up imaging from fly-bys and orbiters affords the opportunity for discovery of atmospheric phenomena on the outer planets forever beyond the reach of terrestrial laboratories and intuition. On the other hand, a large number of specific applications of close-up imaging to study the giant planets are suggested by experience in photography from Earth and Mars orbit, and by ground-based telescopic studies of Jupiter and Saturn. Photographic observations of horizontal and vertical cloud structure at both global and finer scale, and motions and other time changes, will be essential for the study of atmospheric circulation. Size and composition of cloud particles also is a credible objective of fly-by and orbiter missions carrying both imaging and photo-polarimeter experiments.The satellites of the outer planets actually constitute three distinct classes: lunar-sized objects, asteroidal-sized objects, and particulate rings. Imaging promises to be the primary observational tool for each category with results that could impact scientific thinking in the late 70's and 80's as significantly as has close-up photography of Mars and the Moon in the last 10 yr.Finally, it should be recognized that photography occupies a unique role in the interaction between science and the popular mind. This popular, educational aspect of imaging constitutes a unique aspect of 20th Century culture. Imaging therefore is not only a primary basis for scientific discovery in the exploration of the outer planets, but an important human endeavor of enduring significance.Contribution No. 2163 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109.This is one of the publications by the Science Advisory Group.  相似文献   
5.
The availability of water-ice at the surface in the Mars polar cap and within the top meter of the high-latitude regolith raises the question of whether liquid water can exist there under some circumstances and possibly support the existence of biota. We examine the minimum temperatures at which liquid water can exist at ice grain-dust grain and ice grain-ice grain contacts, the minimum subfreezing temperatures at which terrestrial organisms can grow or multiply, and the maximum temperatures that can occur in martian high-latitude and polar regions, to see if there is overlap. Liquid water can exist at grain contacts above about -20 degrees C. Measurements of growth in organisms isolated from Siberian permafrost indicate growth at -10 degrees C and metabolism at -20 degrees C. Mars polar and high-latitude temperatures rise above -20 degrees C at obliquities greater than ~40 degrees, and under some conditions rise above 0 degrees C. Thus, the environment in the Mars polar regions has overlapped habitable conditions within relatively recent epochs, and Mars appears to be on the edge of being habitable at present. The easy accessibility of the polar surface layer relative to the deep subsurface make these viable locations to search for evidence of life.  相似文献   
6.
Flight Data Analysis and Display, FDAD, is a hardware and software tool that permits the monitoring of the hardware and software of a multi-processor Electronic Countermeasure, ECM, system in a non-interfering mode. FDAD monitors user-defined memory addresses and hardware lines and displays in real-time the changes to these locations. Data is also stored for subsequent analysis and display. This tool allows developers to identify the operating characteristics of an extremely complex and fast system with the assurance that the instrumentation does not alter the true performance of that system.  相似文献   
7.
For most liquid-fueled combustion systems the behavior of the fuel as it is introduced to the combustion zone, often by spray injection, will have a significant impact on combustion. The subsequent combustion may be affected to a considerable degree by the initial spread of the liquid, break-up of larger fuel sheets and droplets into droplets of various sizes, droplet vaporization, and diffusion of gaseous fuel. Among the many factors which affect spray break-up and droplet vaporization are the environmental conditions into which the spray is introduced. For both diesel engines and rockets the environment pressure and temperature may be above the critical pressure and temperature of the injected fuel. In a compression-ignition internal combustion engine, the environment consists primarily of air, at pressures from 20 to 100 atmospheres and temperatures ranging from 900 to 1500 K. Even higher pressures are encountered in turbocharged diesels. A typical diesel reference fuel, dodecane, has a thermodynamic critical pressure of about 17 atmospheres, and a critical temperature of 600 K. Fuel is injected into a diesel engine environment in which ambient pressures exceed the critical pressure. While droplet temperatures are subcritical at first, they may rise to the critical temperature or higher.This paper will survey current understanding of supercritical pressure droplet vaporization. Specifically, the topics covered will include: liquid phase behavior; vapor phase behavior; thermodynamic and transport properties; droplet distribution and break-up; micro-explosions; and effects of microgravity.  相似文献   
8.
The 2007 US National Research Council Decadal Survey for Earth Science and Applications from Space was the first consensus perspective produced by the US Earth Science community of the relative priorities among a sequence of 17 satellite missions over the course of the next decade. However, the Decadal Survey only captured the perspective of the science community, leading to questions about the inclusion of broader priorities from constituent communities and stakeholders. We present a stakeholder value network analysis for the NASA/NOAA Earth Observation Program. The analysis includes a rigorous articulation of the needs and objectives of 13 major stakeholders and a complete stakeholder value network with 190 individual “value flows” that capture the interactions between all the stakeholders. It produces a novel stakeholder map, graphically indicating the outputs most likely to create a lasting Earth Science program. The most important value loops and program outputs are used to derive a set of high-level program goals that suggest what NASA and NOAA should do, as well as how they should conduct business. The analysis concludes that international partnerships represent a strong potential partner for certain science missions with greater potential value delivery than currently-prioritized efforts with defense stakeholders and concludes that weather and land-use missions, in addition to climate missions, should be given highest priority; water, human health, and solid Earth missions should be given lower priority based on each science category's potential for delivering value to the entire stakeholder network.  相似文献   
9.
10.
Preservation of microbial lipids in geothermal sinters   总被引:1,自引:0,他引:1  
Lipid biomarkers are widely used to study the earliest life on Earth and have been invoked as potential astrobiological markers, but few studies have assessed their survival and persistence in geothermal settings. Here, we investigate lipid preservation in active and inactive geothermal silica sinters, with ages of up to 900 years, from Champagne Pool, Waiotapu, New Zealand. Analyses revealed a wide range of bacterial biomarkers, including free and bound fatty acids, 1,2-di-O-alkylglycerols (diethers), and various hopanoids. Dominant archaeal lipids include archaeol and glycerol dialkyl glycerol tetraethers (GDGTs). The predominance of generally similar biomarker groups in all sinters suggests a stable microbial community throughout Champagne Pool's history and indicates that incorporated lipids can be well preserved. Moreover, subtle differences in lipid distributions suggest that past changes in environmental conditions can be elucidated. In this case, higher archaeol abundances relative to the bacterial diethers, a greater proportion of cyclic GDGTs, the high average chain length of the bacterial diethers, and greater concentrations of hopanoic acids in the older sinters all suggest hotter conditions at Champagne Pool in the past.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号