首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   4篇
  国内免费   1篇
航空   5篇
  2022年   1篇
  2021年   4篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
黄镜玮  付维亮  马国骏  王国杰  高杰 《航空学报》2021,42(7):124549-124549
为探究动叶上游不同轮缘密封结构封严出流对1.5级涡轮端区流场及轮缘密封间流动干扰的影响区别,通过Shear Stress Transport (SST)湍流模型对无密封腔室,上游密封结构分别为简单斜向、简单径向,下游密封腔室为简单轴向的1.5级涡轮进行了非定常数值模拟。结果表明:轮缘密封间干扰使带径向密封结构模型的下游轮缘腔室内封严效率偏低,并增强了固有的非定常不稳定特性。上游密封结构变化对动叶和第2级静叶流动的影响差异分别位于35%、65%叶高范围内;径向密封结构增加了上游静叶的堵塞效应、动叶入口气流的欠偏转程度、叶根吸力面负荷与14%叶高以上的轮毂通道涡强度,并在第2级静叶入口处产生更多低频压力波动,使其尾缘脱落涡尺度增大但13%叶高以上的轮毂通道涡强度较弱。与无密封腔室相比,通入封严气体总量为主流流量的0.8%时,带斜向密封结构的1.5级涡轮气动效率降低了0.94%,且带径向密封结构的1.5级涡轮气动损失额外增加了0.17%。  相似文献   
2.
大子午扩张涡轮端壁二次流与热负荷之间的关系,对于端壁冷却非常重要。本文采用几何约化法,对某1.5级大子午扩张涡轮进行数值模拟,研究了大子午扩张涡轮上端壁非定常流动和传热特性。计算结果表明:大子午扩张涡轮上通道涡尺度较大且位置发生改变,沿径向向下移动约20%叶高;R1出口泄漏涡、通道涡和尾迹是造成S2流动和传热非定常性的主要因素;传热与二次流密切相关,对传热研究必须与流动相结合。研究结果将有助于提高对大子午扩张涡轮端壁非定常流动和传热特性的认识。  相似文献   
3.
为了探究绊线对大子午扩张涡轮端壁边界层分离和马蹄涡的削弱效果,分析绊线对大子午扩张涡轮端壁传热特性的影响。对某1.5级涡轮应用SST湍流模型对端壁流动进行精细捕捉,并进行了气动和传热的有效性实验验证。结果显示:绊线减弱了叶片前缘驻点高压区,使得上端壁分离点位置提前;绊线增强了来自涡轮动叶的泄漏涡强度,但极大地削弱上通道涡;此外,中间位置绊线使得总压损失降低了2.28%。叶片前缘热负荷增加,Trip(5.3% E)绊线使得叶片表面热通量降低1.66%。大体上讲,绊线的引入减小了大子午扩张涡轮通道涡等二次流的影响,优化了大子午扩张涡轮的流场,降低叶片表面换热量。  相似文献   
4.
大子午扩张涡轮由于子午型线扩张度较大,因而易导致端区边界层分离及热集中,针对这个现象,采用数值模拟方法,并采用正弦曲线对某型1.5级大子午扩张涡轮子午型线采取了8种修型方案,研究子午修型对于端区流动传热性能的影响。计算结果表明,子午修型可以有效地控制端区的分离流动,从而影响着通道涡与脱落涡强度及位置,也影响着端壁及叶片上热负荷分布。在本文研究条件下,振幅为三分之一叶片最大厚度的前凹后凸子午型线有效地减弱了脱落涡引起的损失,进而使整体总压损失减小6.06%,并可以减弱端壁及叶片传热集中,使叶片最大热负荷减轻21%。  相似文献   
5.
进、排气系统对涡轮级的性能影响鲜有研究,本文针对增压器涡轮,采用数值方法对全流道大膨胀比跨声速涡轮与进、排气壳进行耦合计算,探索进、排气壳耦合对涡轮级的性能参数影响,结果显示进气壳主要影响静叶10%叶高与50%叶高前缘来流气流角周向分布,静叶排会减弱进气壳带来的参数周向不均匀性,排气壳主要影响动叶尾缘0°与180°周向位置总压与静压分布,进、排气壳耦合涡轮级总静效率比均匀边界涡轮级下降0.25%。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号