首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
为了探究绊线对大子午扩张涡轮端壁边界层分离和马蹄涡的削弱效果,分析绊线对大子午扩张涡轮端壁传热特性的影响。对某1.5级涡轮应用SST湍流模型对端壁流动进行精细捕捉,并进行了气动和传热的有效性实验验证。结果显示:绊线减弱了叶片前缘驻点高压区,使得上端壁分离点位置提前;绊线增强了来自涡轮动叶的泄漏涡强度,但极大地削弱上通道涡;此外,中间位置绊线使得总压损失降低了2.28%。叶片前缘热负荷增加,Trip(5.3% E)绊线使得叶片表面热通量降低1.66%。大体上讲,绊线的引入减小了大子午扩张涡轮通道涡等二次流的影响,优化了大子午扩张涡轮的流场,降低叶片表面换热量。  相似文献   

2.
孟福生  郑群  付维亮  刘学峥 《推进技术》2019,40(6):1247-1255
为了研究大子午扩张涡轮端区流动和传热特性,并研究叶片端区正弯技术在大子午扩张涡轮中的气动和传热效果,对某大子午扩张涡轮静叶进行数值模拟。运用SST湍流模型精确捕捉流动结构,并进行了气动和传热预测的有效性实验验证。通过分析结果,对大子午扩张涡轮端区流动和传热特性以及两者相互影响关系进行了深入研究,分析了端区正弯技术在重组大子午扩张涡轮端区流动以及合理分布热负荷的应用效果。结果表明:大子午扩张端壁导致涡轮端壁附面层的强烈分离,通道涡分离点提前约15%,高传热区受马蹄涡和通道涡的强烈影响;端区正弯有效地改善了大子午扩张静叶端壁的附面层分离,减小前缘的热负荷25%,提高涡轮的气热性能。  相似文献   

3.
为了研究大子午扩张涡轮端区流动和传热特性,并研究叶片端区正弯技术在大子午扩张涡轮中的气动和传热效果,对某大子午扩张涡轮静叶进行数值模拟。运用SST湍流模型精确捕捉流动结构,并进行了气动和传热预测的有效性实验验证。通过分析结果,对大子午扩张涡轮端区流动和传热特性以及两者相互影响关系进行了深入研究,分析了端区正弯技术在重组大子午扩张涡轮端区流动以及合理分布热负荷的应用效果。结果表明:大子午扩张端壁导致涡轮端壁附面层的强烈分离,通道涡分离点提前约15%,高传热区受马蹄涡和通道涡的强烈影响;端区正弯有效地改善了大子午扩张静叶端壁的附面层分离,减小前缘的热负荷25%,提高涡轮的气热性能。  相似文献   

4.
大子午扩张涡轮端壁二次流与热负荷之间的关系,对于端壁冷却非常重要。本文采用几何约化法,对某1.5级大子午扩张涡轮进行数值模拟,研究了大子午扩张涡轮上端壁非定常流动和传热特性。计算结果表明:大子午扩张涡轮上通道涡尺度较大且位置发生改变,沿径向向下移动约20%叶高;R1出口泄漏涡、通道涡和尾迹是造成S2流动和传热非定常性的主要因素;传热与二次流密切相关,对传热研究必须与流动相结合。研究结果将有助于提高对大子午扩张涡轮端壁非定常流动和传热特性的认识。  相似文献   

5.
大子午扩张涡轮叶片正交设计及性能分析   总被引:1,自引:1,他引:0       下载免费PDF全文
周恩东  高杰  郑群  刘鹏飞  吕从鹏 《推进技术》2016,37(12):2261-2269
在大子午扩张涡轮中,流道的子午扩张会造成较强的端部二次流动,从而产生较大的端区损失。为重组大子午扩张端区流动以减小端区损失,对燃气轮机动力涡轮第一级静叶进行正交设计优化,并对重新设计的正交叶片和原型叶片进行数值模拟计算及对比分析。研究结果表明,采用正交叶片作为大子午扩张静叶的涡轮级效率有明显提高,正交涡轮使得上下端壁的流动趋于平缓,并使得上端壁的通道涡减小,上端壁的流动沿"C"型压力场向叶片的中部移动,减少了端区的流动损失。在叶中和叶根部分流动损失也得到了减小。同时径向静压梯度明显减小,改善了附面层径向的串动,第一级涡轮的效率提升了0.74%,主要提升位置在80%到90%相对叶高处,功率提高了0.69%。  相似文献   

6.
基于压力场分布的大子午扩张涡轮非轴对称端壁造型方法   总被引:1,自引:1,他引:0  
为提高大子午扩张涡轮端区气动及传热性能,基于大子午扩张涡轮上端壁静压场分布细节,使用Bezier曲线与正弦三角函数曲线相结合的非轴对称端壁造型技术,对某1.5级大子午扩张涡轮第2级静叶上端壁进行8种非对称造型设计,并通过SST(shear stress transfer)湍流模型数值求解RANS(Reynolds-averaged Navier-Stokes equations)方程组对造型前后端壁进行了流动与传热特性的研究。结果表明:对大子午扩张涡轮上端壁进行非轴对称造型设计可有效改善其上端区叶片通道内横向压差分布情况;对其上端壁压力面进行通道内凸起造型可降低出口总压损失,当凸起幅值为S2叶高的5%时,出口总压损失最多可降低约1.1%;对其上端壁吸、压力面均进行通道内凹陷造型将减小机匣与叶片的热负荷,当凹陷幅值为S2叶高的5%时,机匣及叶片的热负荷最多可分别降低约3.1%与2.8%。  相似文献   

7.
大子午扩张涡轮扇形叶栅变工况性能实验研究   总被引:4,自引:3,他引:1       下载免费PDF全文
为了研究大子午扩张低压涡轮变工况下的流动性能,分别对大子午扩张低压涡轮的两套不同的扇形叶栅进行气动实验研究。在设计进口气流角条件下,分别进行不同高亚声速马赫数出口变工况实验研究;在出口马赫数不变的条件下,完成变攻角实验。分析了大子午叶栅流动损失特点和二次流的影响规律。结果表明:大子午扩张实验叶栅出口存在两个明显的高损失通道涡,上通道涡位于展向1/3位置,远离上端壁,且强度明显大于下通道涡。随着马赫数增加,叶栅出口流动损失增加了15%。大子午扩张涡轮端壁曲率影响近端壁叶片的压强分布和变工况敏感性,优化端壁曲率将有助于流动状态的改善。  相似文献   

8.
子午扩张对涡轮内旋涡结构影响的数值模拟   总被引:6,自引:0,他引:6  
求解了某型航空发动机的低压涡轮导向器内流场。采用的数值方法为具有 TVD性质的三阶精度GODU NOV格式,湍流模型为 B-L代数模型及 MML模型的混合修正模型。该涡轮导向器的一个显著特点是由于结构上的要求,静叶前子午流道在上端壁具有较大的扩张角。通过数值模拟及流场内涡系结构和损失的分析表明,由于子午扩张造成端壁附面层增厚并在静叶前形成较大的分离区。该分离区的存在不但使静叶前损失急剧增加而且使上端壁马蹄涡和通道涡尺度加大,强度增强,引起流道内损失增加。   相似文献   

9.
大子午扩张涡轮的分离控制   总被引:11,自引:0,他引:11  
大子午扩张涡轮易发生外端壁流动分离,并产生较强顶部二次流。采用对叶型型线外壁和内壁侧逐次前掠宽弦的方法对顶部分离进行控制,并对多个前掠宽弦方案进行全三维数值模拟、流场拓扑分析和流动对比,研究了前掠宽弦叶型在此类涡轮中的应用。结果表明:合理的前掠宽弦叶型能够有效地减弱甚至消除外端壁流动分离,改善顶部压力流向分布;同时也能很好地控制顶部二次流的发展,提高大子午扩张涡轮的气动性能。  相似文献   

10.
大子午扩张涡轮的根部型线研究   总被引:4,自引:0,他引:4  
大子午扩张涡轮具有外壁侧来流易分离、导叶出口径向压差较大等特点,对根部型线优化改型和原型进行全三维数值模拟,分析了下端壁叶型型线对流动的影响,并研究了根部型线设计特点.结果表明:优化根部型线,能够合理的对栅前流量径向分布进行调整,减弱甚至消除顶部来流分离,改善顶部流动;同时,此叶型也能合理的改善出口马赫数分布以及出口压力径向分布,减弱和消除吸力侧出口S1面分离的径向流动,改善根部流动.   相似文献   

11.
为探讨非轴对称端壁造型降低涡轮叶栅二次流损失的有效性,构建基于高压涡轮直列叶栅的非轴对称端壁气动优化设计方法,并用NUMECA/FineTurbo模块对优化后的结果和原涡轮叶栅分别进行流场计算。结果表明:非轴对称端壁造型使叶栅通道的总压损失系数面降低了2.84%;改变了通道内的叶片载荷分布,形成了叶型的载荷后置;改善了流场内的流动结构,使气流的流动变得更加通畅;延迟了通道涡的过早形成,减小了通道涡的强度和尺度。因此,非轴对称端壁造型可以有效地降低涡轮叶栅通道内的二次流损失。  相似文献   

12.
现代航空发动机为获得更大输出功率和推重比,涡轮进口温度不断提高,因此高温燃气在无围带动叶叶顶间隙的泄漏引起叶顶热负荷急剧增加,甚至导致叶片烧蚀、失效,严重影响涡轮运行安全。为降低叶顶热负荷,抑制泄漏流,本文以GE-E3第一级叶栅为研究对象,通过求解三维Reynolds-Averaged Navier-Stokes (RANS)方程和湍流模型研究了多腔室凹槽对叶顶流动传热性能的影响。研究结果表明:在多腔室凹槽中,叶顶换热系数随着叶顶空腔数量的增加而逐渐减小,凹槽腔室内刮削涡可有效降低泄漏流量。格栅结构在凹槽中起到“气动篦齿”作用,在0至20%的流向区域内泄漏流控制效果显著。Case7的叶顶换热系数最小,比Case1降低了40.44%;Case2和Case3可显著抑制叶顶泄漏量,与Case1相比分别降低了33.82%、28.90%。  相似文献   

13.
为有效抑制涡轮转子叶尖泄漏并改善叶尖热负荷,采用数值模拟的方法,对5种叶尖肋条结构的高压涡轮带气膜冷却突肩叶片流场进行计算,评估了不同叶尖肋条结构的气热性能。结果表明:在叶尖增加肋条结构能够有效调控叶尖空腔涡、刮擦涡、肋后涡和冷气肾形涡的路径,从而起到减小叶尖高表面传热系数区,提高叶尖平均气膜冷却效率的作用,同时有效降低了叶片压力侧前缘进入的泄漏流量,使得总压损失系数下降。凹槽尾缘压力侧半肋条结构具有最佳的气热性能,对泄漏流的阻碍作用最好,与无肋条情况相比,其叶尖平均表面传热系数降低了20.1%;平均气膜冷却效率提升了24.3%。  相似文献   

14.
采用数值模拟方法研究了超高负荷涡轮叶栅叶顶间隙流动特征,详细分析了泄漏涡、叶顶分离涡、上通道涡等的流动细节,在此基础上分析间隙高度对流场特征和叶片负荷的影响.结果表明:超高负荷涡轮叶栅叶顶间隙区域存在多种形式的流动分离,泄漏流非常强烈,不仅直接影响上通道涡的形成与发展,使通道涡整体向叶根移动,而且部分泄漏流进入下通道涡;随着间隙高度增加,叶顶分离涡和泄漏涡均明显增强,叶片负荷尤其是叶顶负荷有所降低.   相似文献   

15.
吸力面上气膜冷却对涡轮叶栅流场影响的实验研究   总被引:5,自引:0,他引:5  
陈浮  宋彦萍  王仲奇 《航空动力学报》1999,14(2):161-165,219
利用气动探针测量和墨迹显示方法,对不同实验方案下,带吸力面气膜冷却的某型涡轮导向器叶栅流场结构进行了实验研究。结果表明,冷气射流与燃气主流的掺混以及卵型涡的形成,使得吸力面根部出现了与通道涡旋向相反的涡系;卵型涡始终以一定形式存在于叶片表面,直到叶栅出口与尾迹相互作用后才达到均匀状态;冷气射流很难进入到通道涡分离线与端壁所形成的三角形区域中,通道涡分离线明显向端壁方向下移。   相似文献   

16.
通过风洞实验和数值计算,对某型涡扇发动机原型和改型涡轮低压导向器进行了详细的流场测量与数值模拟,以考察在具有大扩张角前置机匣的涡轮导向器流道中,多种几何与气动参数变化对通道涡形成和发展的影响,特别是叶片弯曲对通道涡位置及强度的影响。结果表明:由于导向器进口前的机匣段上端壁子午扩张引起流动分离,并在叶栅进口形成远大于普通叶栅实验的大厚度进口边界层,弯叶片对通道涡位置的影响与其它进口条件下的实验结果有所不同,表现为叶片正弯引起上通道涡核心位置上移,进口分离、大厚度进口边界层以及叶片正弯引起的叶片表面静压变化是造成这一现象的根本原因。  相似文献   

17.
三维设计思想在子午流道大扩张角条件下的应用   总被引:1,自引:1,他引:0  
王雷 《航空动力学报》2012,27(12):2786-2791
根据三维设计思想,提出了针对子午流道大扩张角条件下涡轮导向叶栅的设计思想.研究结果表明:在子午流道的设计上,采用减小内端壁扩张角及加大外端壁扩张角的方式,可有效保证内端壁附近气流的抗分离能力,并且导向叶片采用正倾斜设计,以降低通道涡的径向迁移,从而减小或消除导叶尖部气流的分离,增加尖部附近气流的抗分离能力,达到减少损失的目的.该方法现已在某航空发动机高性能低压涡轮气动设计中进行了成功的应用和验证.   相似文献   

18.
对具有叶顶间隙的直叶栅和正、反弯三套涡轮叶栅进行了实验测量,研究在较大间隙(0.036)下,气流冲角和叶片弯曲对叶顶泄漏流动的影响。根据壁面流动的墨迹显示,应用拓扑学原理,分析了叶片表面和上、下端壁的拓扑结构,指出当气流冲角由0°增至20°时,与零冲角下的同类叶栅相比较,鞍点的位置均移向上游,分离区的范围在沿流向和垂直流向的方向上扩大,上、下通道涡分离线向叶展中部爬升。在冲角为零以及20°的情况下,叶片正弯均消除了上通道涡,这一方面减少了壁面流场中奇点和分离线的数量,较大地降低了上通道涡与泄漏涡的相互作用损失,另一方面强化了端壁横流对泄漏流动的封堵作用,有利于降低相对漏气量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号