首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   2篇
航天技术   3篇
航天   1篇
  2021年   2篇
  2014年   1篇
  2011年   1篇
  1998年   1篇
  1990年   1篇
排序方式: 共有6条查询结果,搜索用时 62 毫秒
1
1.
Exploration of the inner planets of the Solar System is vital to significantly enhance the understanding of the formulation of the Earth and other planets. This paper therefore considers the development of novel orbits of Mars, Mercury and Venus to enhance the opportunities for remote sensing of these planets. Continuous acceleration is used to extend the critical inclination of highly elliptical orbits at each planet and is shown to require modest thrust magnitudes. This paper also presents the extension of existing sun-synchronous orbits around Mars. However, unlike Earth and Mars, natural sun-synchronous orbits do not exist at Mercury or Venus. This research therefore also uses continuous acceleration to enable circular and elliptical sun-synchronous orbits, by ensuring that the orbit's nodal precession rate matches the planets mean orbital rate around the Sun, such that the lighting along the ground-track remains approximately constant over the mission duration. This property is useful both in terms of spacecraft design, due to the constant thermal conditions, and for comparison of images. Considerably high thrust levels are however required to enable these orbits, which are prohibitively high for orbits with inclinations around 90°. These orbits therefore require some development in electric propulsion systems before becoming feasible.  相似文献   
2.
Høg  E.  Pagel  B.E.J.  Portinari  L.  Thejll  P.A.  Macdonald  J.  Girardi  L. 《Space Science Reviews》1998,84(1-2):115-126
The primordial helium abundance YP is important for cosmology and the ratio Y/Z of the changes relative to primordial abundances constrains models of stellar evolution. While the most accurate estimates of YP come from emission lines in extragalactic H II regions, they involve an extrapolation to zero metallicity which itself is closely tied up with the slope Y/Z. Recently certain systematic effects have come to light in this exercise which make it useful to have an independent estimate of Y/Z from fine structure in the main sequence of nearby stars. We derive such an estimate from Hipparcos data for stars with Z Z and find values between 2 and 3, which are consistent with stellar models, but still have a large uncertainty.  相似文献   
3.
Manoeuvrable, responsive satellite constellations that respond to real time events could provide data on demand for time-critical tasks, such as disaster monitoring and relief efforts. The authors demonstrate the feasibility of such a system by expanding on a fully analytical method for designing responsive spacecraft manoeuvres using low thrust propulsion. These manoeuvres are perceived as a graph that enables efficient exploration and optimised selection of favourable routes that achieve mission goals while highlighting resilience and redundancy in the mission’s execution. A case study is presented that considers four satellites required to provide flyovers of two targets, with an associated graph of 10,839 possible manoeuvres. Investigation of the graph highlights that a good, but not minimum time, solution can allow the system to perform well, while also providing greater resilience to changes in mission priorities and errors in execution. This analytical approach enables operators to trade-off between a loss of time by using only one satellite versus the disruption of moving multiple satellites for a potentially faster response. The impact of varying mission capabilities, such as using fewer satellites, smaller swath width or less propellant, can be evaluated by reducing the graph without recalculating manoeuvre options.  相似文献   
4.
Highly efficient low-thrust propulsion is increasingly applied beyond commercial use, also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another recent development is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities.Just over ten years ago, the DLR-ESTEC Gossamer Roadmap to Solar Sailing was set up to guide technology developments towards a propellant-less and highly efficient class of spacecraft for solar system exploration and applications missions: small spacecraft solar sails designed for carefree handling and equipped with carried application modules.Soon, in three dedicated Gossamer Roadmap Science Working Groups it initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring, Solar Polar Orbiter (SPO) delivery to very high inclination heliocentric orbit, and multiple Near-Earth Asteroid (NEA) rendezvous (MNR). Together, they demonstrate the capability of near-term solar sails to achieve at least in the inner solar system almost any kind of heliocentric orbit within 10 years, from the Earth-co-orbital to the extremely inclined, eccentric and even retrograde. Noted as part of the MNR study, sail-propelled head-on retrograde kinetic impactors (RKI) go to this extreme to achieve the highest possible specific kinetic energy for the deflection of hazardous asteroids.At DLR, the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)2, i.e., 20 m by 20 m square solar sail at DLR Cologne in 1999 was revitalized and directed towards a 3-step small spacecraft development line from as-soon-as-possible sail deployment demonstration (Gossamer-1) via in-flight evaluation of sail attitude control actuators (Gossamer-2) to an envisaged proving-the-principle flight in the Earth-Moon system (Gossamer-3). First, it turned the concept of solar sail deployment on its head by introducing four separable Boom Sail Deployment Units (BSDU) to be discarded after deployment, enabling lightweight 3-axis stabilized sailcraft. By 2015, this effort culminated in the ground-qualified technology of the DLR Gossamer-1 deployment demonstrator Engineering Qualification Model (EQM). For mission types using separable payloads, such as SPO, MNR and RKI, design concepts can be derived from the BSDU characteristic of DLR Gossamer solar sail technology which share elements with the separation systems of asteroid nanolanders like MASCOT. These nano-spacecraft are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms.Like any roadmap, this one contained much more than the planned route from departure to destination and the much shorter distance actually travelled. It is full of lanes, narrow and wide, detours and shortcuts, options and decision branches. Some became the path taken on which we previously reported. More were explored along the originally planned path or as new sidings in search of better options when circumstance changed and the project had to take another turn. But none were dead ends, they just faced the inevitable changes when roadmaps face realities and they were no longer part of the road ahead. To us, they were valuable lessons learned or options up our sleeves. But for future sailors they may be on their road ahead.  相似文献   
5.
Solar sailing has long been envisaged as an enabling or disruptive technology. The promise of open-ended missions allows consideration of radically new trajectories and the delivery of spacecraft to previously unreachable or unsustainable observation outposts. A mission catalogue is presented of an extensive range of potential solar sail applications, allowing identification of the key features of missions which are enabled, or significantly enhance, through solar sail propulsion. Through these considerations a solar sail application-pull technology development roadmap is established, using each mission as a technology stepping-stone to the next.  相似文献   
6.
The Global Positioning System (GPS) Mission Planner (GMP) program, which has been implemented on an IBM PC, is described in terms of its features and architecture, and sample outputs are presented. The GMP was written to permit operational units to plan missions and to accomplish survivability and navigation assessments based on realistic trajectories, GPS almanac data, broadband jammer specifications, and digital terrain elevation data (DTED). GMP supports trajectory generation for generic air, land, or naval vehicles and has `sanity' checks for altitude acceleration, terrain slope, and velocity limits. A survivability measure is computed based on exposure time to various threat types. Yuma-type almanac data are used to support the GMP to define GPS satellite orbits. Jammers, threats, and trajectory wavepoints may be defined by either keyboard entry (e.g. longitude, latitude, and altitude) or via mouse and cursor on a displayed pseudo-color DTED map on the PC monitor. Satellite visibility and best dilution-of-precision (DOP) are computed using DTED. jammer visibility and power levels at the vehicle are similarly computed. A realistic body masking and antenna gain model is used to compute carrier-to-noise densities for each visible satellite. A navigation assessment program emulates a multichannel receiver to generate position and velocity measurement uncertainties. An integrated Kalman filter generates position and velocity navigation estimates. Results are graphically displayed to the operator  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号