首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the preliminary systems design of a pole-sitter. This is a spacecraft that hovers over an Earth pole, creating a platform for full hemispheric observation of the polar regions, as well as direct-link telecommunications. To provide the necessary thrust, a hybrid propulsion system combines a solar sail with a more mature solar electric propulsion (SEP) thruster. Previous work by the authors showed that the combination of the two allows lower propellant mass fractions, at the cost of increased system complexity. This paper compares the pure SEP spacecraft with the hybrid spacecraft in terms of the launch mass necessary to deliver a certain payload for a given mission duration. A mass budget is proposed, and the conditions investigated under which the hybrid sail saves on the initial spacecraft initial mass. It is found that the hybrid spacecraft with near- to mid-term sail technology has a lower initial mass than the SEP case if the mission duration is 7 years or more, with greater benefits for longer duration missions. The hybrid spacecraft with far-term sail technology outperforms the pure SEP case even for short missions.  相似文献   

2.
The interstellar heliopause probe (IHP) is one of ESA’s technology reference studies (TRS). The TRS aim to focus the development of strategically important technologies of relevance to future science missions by studying technologically demanding and scientifically interesting missions that are currently not part of the science mission programme.

Equipped with a highly integrated payload suite (HIPS), the IHP will perform in situ exploration of the heliopause and the heliospheric interface. The HIPS, which is a standard element in all TRSs, miniaturize payloads through resource reduction by using miniaturized components and sensors, and by sharing common structures and payload functionality.

To achieve the scientific requirements of the mission, the spacecraft is to leave the heliosphere as close to the heliosphere nose as possible and reach a distance of 200 AU from the Sun within 25 years. This is possible by using a trajectory with two solar flybys and a solar sail with characteristic acceleration of 1.1 mm/s2, which corresponds to a 245 × 245 m2 solar sail and a sail thickness of 1–2 μm. The trajectory facilitates a modest sail design that could potentially be developed in a reasonable timeframe.

In this paper, an update to the results of studies being performed on this mission will be given and the current mission baseline and spacecraft design will be described. Furthermore, alternative solar sail systems and enabling technologies will be discussed.  相似文献   


3.
Ballistic design of solar sailing missions in the solar system is composed of defining the design parameters, the control programs, and the trajectories that provide performance goals of a flight. The use of a solar sail spacecraft imposes specific restrictions on mission parameters that include the degradation limit on the flight duration, the maximum temperature of solar sail's surface, the minimum distance from the Sun, the maximum angular velocity of the spacecraft's rotation and others.Many authors considered the impact of these restrictions on the design of the mission separately, but they used a sophisticated method of finding the exact optimal motion control or applied the most straightforward laws of motion control. This paper uses local-optimal control laws at the complete mathematical models of motion and functioning of solar sail spacecraft to describe a technique of designing interplanetary missions. The described method avoids the need to obtain an accurate optimal solution to the control problem and does not cause significant computational difficulties.  相似文献   

4.
The 3-step Gossamer road map to solar sailing is presented that has been agreed between DLR and ESA in November 2009. The main and exclusive purpose of that project is to develop, to prove, and to demonstrate the solar sail technology as a safe and reliably manageable propulsion technique for long lasting and deep space missions. Since the development of the solar sail technology is quite a complex task, presently at the DLR implemented solar sail related research activities will be presented as well.  相似文献   

5.
Highly efficient low-thrust propulsion is increasingly applied beyond commercial use, also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another recent development is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities.Just over ten years ago, the DLR-ESTEC Gossamer Roadmap to Solar Sailing was set up to guide technology developments towards a propellant-less and highly efficient class of spacecraft for solar system exploration and applications missions: small spacecraft solar sails designed for carefree handling and equipped with carried application modules.Soon, in three dedicated Gossamer Roadmap Science Working Groups it initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring, Solar Polar Orbiter (SPO) delivery to very high inclination heliocentric orbit, and multiple Near-Earth Asteroid (NEA) rendezvous (MNR). Together, they demonstrate the capability of near-term solar sails to achieve at least in the inner solar system almost any kind of heliocentric orbit within 10 years, from the Earth-co-orbital to the extremely inclined, eccentric and even retrograde. Noted as part of the MNR study, sail-propelled head-on retrograde kinetic impactors (RKI) go to this extreme to achieve the highest possible specific kinetic energy for the deflection of hazardous asteroids.At DLR, the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)2, i.e., 20 m by 20 m square solar sail at DLR Cologne in 1999 was revitalized and directed towards a 3-step small spacecraft development line from as-soon-as-possible sail deployment demonstration (Gossamer-1) via in-flight evaluation of sail attitude control actuators (Gossamer-2) to an envisaged proving-the-principle flight in the Earth-Moon system (Gossamer-3). First, it turned the concept of solar sail deployment on its head by introducing four separable Boom Sail Deployment Units (BSDU) to be discarded after deployment, enabling lightweight 3-axis stabilized sailcraft. By 2015, this effort culminated in the ground-qualified technology of the DLR Gossamer-1 deployment demonstrator Engineering Qualification Model (EQM). For mission types using separable payloads, such as SPO, MNR and RKI, design concepts can be derived from the BSDU characteristic of DLR Gossamer solar sail technology which share elements with the separation systems of asteroid nanolanders like MASCOT. These nano-spacecraft are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms.Like any roadmap, this one contained much more than the planned route from departure to destination and the much shorter distance actually travelled. It is full of lanes, narrow and wide, detours and shortcuts, options and decision branches. Some became the path taken on which we previously reported. More were explored along the originally planned path or as new sidings in search of better options when circumstance changed and the project had to take another turn. But none were dead ends, they just faced the inevitable changes when roadmaps face realities and they were no longer part of the road ahead. To us, they were valuable lessons learned or options up our sleeves. But for future sailors they may be on their road ahead.  相似文献   

6.
Past and current magnetosphere missions employ conventional spacecraft formations for in situ observations of the geomagnetic tail. Conventional spacecraft flying in inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year, since the geomagnetic tail is always aligned with the Earth-Sun line, and therefore, rotates annually. Solar sails are able to artificially create sun-synchronous orbits such that the orbit apse line remains aligned with the geomagnetic tail line throughout the entire year. This continuous presence in the geomagnetic tail can significantly increase the science phase for magnetosphere missions. In this paper, the problem of solar sail formation design is explored using nonlinear programming to design optimal two-craft, triangle, and tetrahedron solar sail formations, in terms of formation quality and formation stability. The designed formations are directly compared to the formations used in NASA’s Magnetospheric Multi-Scale mission.  相似文献   

7.
For precursor solar sail activities a strategy for a controlled deployment of large membranes was developed based on a combination of zig-zag folding and coiling of triangular sail segments spanned between crossed booms. This strategy required four autonomous deployment units that were jettisoned after the deployment is completed. In order to reduce the complexity of the system an adaptation of that deployment strategy is investigated.A baseline design for the deployment mechanisms is established that allows the deployment actuation from a central bus system in order to reduce the complexity of the system. The mass of such a sail craft will be slightly increased but its performance is still be reasonable for first solar sail missions.The presented design will be demonstrated on breadboard level showing the feasibility of the deployment strategy. The characteristic acceleration will be evaluated and compared to the requirements of certain proposed solar sail missions.  相似文献   

8.
Status of solar sail technology within NASA   总被引:2,自引:0,他引:2  
In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center’s Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L’Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails – perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.  相似文献   

9.
针对太阳系远深距离的探测将是人类下一阶段深空探测活动的主要目标。这一目标的实现依赖于探测器连续推进动力技术的突破。从描述连续常值推力下太空飞行的施图林格解出发,对其中反映的深远空飞行任务有效载荷比、任务时间、飞行距离等关键参数与发动机性能之间的关系进行了深入分析。给出了在特定任务时长、特定飞行距离要求下发动机比冲、功率需要满足的条件及其对有效载荷比、最终飞行速度等指标的影响。此外,基于二体轨道动力学对太阳系行星探测的大椭圆转移轨道和转移能量进行了推导,并对连续推力的太阳帆任务方案涉及的关键技术指标做了理论性的计算。这些结论是对深空探测连续推力方案基础理论的归纳,可以为我国未来开展深远空探测活动提供重要的启发和指导。  相似文献   

10.
电磁帆是一类利用太阳风驱动的无工质或少工质新型推进技术,在需要推力器长时间工作的深空探测任务中具有非常广阔的应用前景。首先介绍了电磁帆的基本概念和主要分类,其次分别介绍了电帆、纯磁帆和磁等离子体帆三类推进方式的系统组成和工作原理,重点介绍了各自的研究现状,并梳理出了相关关键技术,同时介绍了等离子体磁罩技术。最后对电磁帆推进技术研究进展进行了总结,为国内开展此方面研究提供了研究方向和发展思路。  相似文献   

11.
Propellantless continuous-thrust propulsion systems, such as electric solar wind sails, may be successfully used for new space missions, especially those requiring high-energy orbit transfers. When the mass-to-thrust ratio is sufficiently large, the spacecraft trajectory is characterized by long flight times with a number of revolutions around the Sun. The corresponding mission analysis, especially when addressed within an optimal context, requires a significant amount of simulation effort. Analytical trajectories are therefore useful aids in a preliminary phase of mission design, even though exact solution are very difficult to obtain. The aim of this paper is to present an accurate, analytical, approximation of the spacecraft trajectory generated by an electric solar wind sail with a constant pitch angle, using the latest mathematical model of the thrust vector. Assuming a heliocentric circular parking orbit and a two-dimensional scenario, the simulation results show that the proposed equations are able to accurately describe the actual spacecraft trajectory for a long time interval when the propulsive acceleration magnitude is sufficiently small.  相似文献   

12.
The construction of a solar sail from commercially available metallized film presents several challenges. The solar sail membrane is made by seaming together precut lengths of ultrathin metallized polymer film into the required geometry. This assembled sail membrane is then folded into a small stowage volume prior to launch. The sail membranes must have additional features for connecting to rigid structural elements (e.g., sail booms) and must be electrically grounded to the spacecraft bus to prevent charge build up. Space durability of the material and mechanical interfaces of the sail membrane assemblies will be critical for the success of any solar sail mission. In this study, interfaces of polymer/metal joints in a representative solar sail membrane assembly were tested to ensure that the adhesive interfaces and the fastening grommets could withstand the temperature range and expected loads required for mission success. Various adhesion methods, such as surface treatment, commercial adhesives, and fastening systems, were experimentally tested in order to determine the most suitable method of construction.  相似文献   

13.
CubeSail is a nano-solar sail mission based on the 3U CubeSat standard, which is currently being designed and built at the Surrey Space Centre, University of Surrey. CubeSail will have a total mass of around 3 kg and will deploy a 5 × 5 m sail in low Earth orbit. The primary aim of the mission is to demonstrate the concept of solar sailing and end-of-life de-orbiting using the sail membrane as a drag-sail. The spacecraft will have a compact 3-axis stabilised attitude control system, which uses three magnetic torquers aligned with the spacecraft principle axis as well as a novel two-dimensional translation stage separating the spacecraft bus from the sail. CubeSail’s deployment mechanism consists of four novel booms and four-quadrant sail membranes. The proposed booms are made from tape-spring blades and will deploy the sail membrane from a 2U CubeSat standard structure. This paper presents a systems level overview of the CubeSat mission, focusing on the mission orbit and de-orbiting, in addition to the deployment, attitude control and the satellite bus.  相似文献   

14.
The so-called “compound solar sail”, also known as “Solar Photon Thruster” (SPT), is a design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT), which does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. After having presented the equations that describe the force on the ASPT and after having performed a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: an Earth–Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth–Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large change in orbital eccentricity is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2 mm/s2. Our results show that an SPT is not superior to the flat solar sail unless very idealistic assumptions are made.  相似文献   

15.
The CubeSail mission is a low-cost demonstration of the UltraSail solar sailing concept (, ,  and ), using two near-identical CubeSat satellites to deploy a 260 m-long, 20 m2 reflecting film. The two satellites are launched as a unit, detumbled, and separated, with the film unwinding symmetrically from motorized reels. The conformity to the CubeSat specification allows for reduction in launch costs as a secondary payload and utilization of the University of Illinois-developed spacecraft bus. The CubeSail demonstration is the first in a series of increasingly-complex missions aimed at validating several spacecraft subsystems, including attitude determination and control, the separation release unit, reel-based film deployment, as well as the dynamical behavior of the sail and on-orbit solar propulsion. The presented work describes dynamical behavior and control methods used during three main phases of the mission. The three phases include initial detumbling and stabilization using magnetic torque actuators, gravity-gradient-based deployment of the film, and steady-state film deformations in low Earth orbit in the presence of external forces of solar radiation pressure, aerodynamic drag, and gravity-gradient.  相似文献   

16.
The majority of solar sailing missions utilise semi-rigid boom technology but this places limits on the possible size of the sail. Practical large sails may be constructed using flexible booms on a spinning satellite. The dynamics of the deployment of long flexible booms are investigated and limiting parameters discussed. Deployment strategies are proposed utilising active deployment and a means of passive deployment which requires no direct control of the deployment process. Practical insights into the design, testing and use of a flexible boom solar sail deployment mechanism is presented based on small scale experimental testing, discussing aspects such as boom winding and balanced deployment. Three novel deployment mechanism design concepts are developed; two passive mechanisms using rotational damping to retard the boom deployment and one active concept takes advantage of the forces produced by the spinning nature of the satellite to develop a compact deployment mechanism.  相似文献   

17.
The aim of this paper is to explore the capabilities of a solar electric propelled spacecraft on a mission towards circumsolar space. Using an indirect approach, the paper investigates minimum time of transfer (direct) trajectories from an initial heliocentric parking orbit to a desired final heliocentric target orbit, with a low perihelion radius and a high orbital inclination. The simulation results are then collected into graphs and tables for a trade-off analysis of the main mission parameters. Finally, a comparison of the performance between a solar electric and a (photonic) solar sail based spacecraft is discussed.  相似文献   

18.
太阳帆推进任务的快速仿真方法   总被引:1,自引:0,他引:1  
研究太阳帆的力学特性和轨道控制设计方法,导出太阳帆的无奇点控制律.提出通过STK中MATLAB语言编写的嵌入式脚本(Plug in Script)来将由控制律得到的光压力加速度矢量,添加到STK轨道计算力学模型中,从而进行轨道控制的方法.仿真结果表明,对于常规方法难以进行仿真分析的航天器动力学模型(如太阳帆),所提出的方法能快速灵活地支持其相应的任务,并增强任务场景的可视化,从而实现利用STK丰富的功能特性进行复杂航天任务的设计、分析和验证.  相似文献   

19.
Literature on solar sailing has thus far mostly considered solar radiation pressure (SRP) as the only contribution to sail force. However, considering a sail in a planetary mission scenario, a new contribution can be added. Since the planet itself emits radiation, this generates a radial planetary radiation pressure (PRP) that is also exerted on the sail. Hence, this work studies the combined effects of both SRP and PRP on a sail for two case studies, i.e. Earth and Venus. In proximity of the Earth, the effect of PRP can be significant under specific conditions. Around Venus, instead, PRP is by far the dominating contribution. These combined effects have been studied for single- and double-sided reflective coating and including eclipse. Results show potential increase in the net acceleration and a change in the optimal attitude to maximise the acceleration in a given direction. Moreover, an increasing semi-major axis manoeuvre is shown with and without PRP, to quantify the difference on a real-case scenario.  相似文献   

20.
A major cause of spacecraft orbital variation comes from natural perturbations, which, in close proximity of a body, are dominated by its non-spherical nature. For small bodies, such as asteroids, these effects can be considerable, given their uneven (and uncertain) mass distribution. Solar sail technology is proposed to reduce or eliminate the net secular effects of the irregular gravity field on the orbit. Initially, a sensitivity analysis will be carried out on the system which will show high sensitivity to changes in initial conditions. This presents a challenge for optimisation methods which require an initial guess of the solution. As such, the Genetic Algorithm (GA) is proposed as the preferred optimisation method as this requires no initial guess from the user. A multi-objective optimisation is performed which aims to achieve a periodic orbit whilst also minimising the effort required by the sail to do so. Given the system sensitivity, the control law for one orbit is not necessarily applicable for any subsequent orbit. Therefore, a new method of updating the control law for subsequent orbits is presented, based on linearisation and use of a Control Transition Matrix (CTM). The techniques will later find application in a multiple asteroid rendezvous mission with a solar sail as the primary propulsion system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号