首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
航空   15篇
综合类   1篇
  2021年   1篇
  2016年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有16条查询结果,搜索用时 171 毫秒
1.
本文讨论了以零价铁代替亚铁盐形成类芬顿反应(Fenton-Kind process)体系应用于碳化硅光学材料抛光过程中的反应机理,通过双转子研抛机床对SiC光学材料进行了研抛实验,验证了类芬顿反应能够有效地提高SiC材料的加工效率和加工质量。通过对比不同磨料粒度研抛液加工结果,获得了SiC材料研抛过程中化学与机械作用规律。  相似文献   
2.
倒置式磁流变抛光装置的设计与研究   总被引:2,自引:0,他引:2  
针对大尺寸工件的抛光加工特点,设计了倒置式的磁流变抛光装置。详细阐述了符合磁流变抛光要求的磁场发生装置的设计原理,并对抛光区域磁场进行了理论分析、软件仿真和优化。  相似文献   
3.
根据回转对称曲面的特点,利用轨迹包络的原理建立了一种光学曲面磨削的数学模型;分析砂轮半径误差和砂轮定位误差对回转对称光学曲面面形精度的影响;针对回转对称曲面建立了误差模型,将砂轮半径误差和砂轮定位误差进行分离和辨识;利用误差补偿机制补偿磨削过程中砂轮半径误差和砂轮定位误差,提高了回转对称曲面精度;在自主研发的磨床上通过实验验证了这种误差补偿机制的有效性。  相似文献   
4.
研究了磁流变液中水含量对KDP工件表面粗糙度的影响;通过在磁流变液循环系统中控制磁流变液的参数,实现了去除函数的稳定,为修形工艺奠定了基础;在自研的KDMRF-200磁流变机床上进行修形实验,口径为Φ75mm的KDP工件面形精度由0.936λ(PV)收敛到0.321λ(PV),低频误差明显改善。  相似文献   
5.
针对KDP晶体质地软、脆性高、易潮解等不利于加工的材料特性,提出了基于潮解原理的无磨料非水基磁流变抛光新工艺,获得了表面粗糙度PV=13.7nm,Rms=1.1nm的超光滑表面。通过分析得出新型磁流变抛光通过溶解作用完成材料去除;实验证明新型液体抛光过程中,溶解作用占主导地位,机械去除作用很小,可忽略不计;去除效率随抛光区域剪切应力增大而增大,而正压力分布对去除效率没有影响。  相似文献   
6.
设计光学元件抛光亚表面损伤检测实验,使用原子力显微镜(AFM)检测传统抛光亚表面塑性划痕与磁流变抛光亚表面塑性划痕的最大深度,通过比较验证磁流变抛光对亚表面塑性划痕的抑制能力;同时利用二次离子质谱仪的深度剖析功能检测磁流变抛光石英样件后表面水解层的深度,指出磁流变抛光属于低损伤性抛光技术。  相似文献   
7.
针对KDP晶体溶于水,易潮解的特点,配制了适用于KDP晶体抛光的磁流变抛光液,测试了其性能,并对KDP晶体进行了初步的抛光实验,结果表明该磁流变抛光液性能较好,实现了KDP晶体的磁流变抛光。  相似文献   
8.
连续相位板的磁流变加工技术研究   总被引:1,自引:0,他引:1  
采用频谱分析法,对磁流变去除函数的修形能力进行了分析研究,以此确定加工特定频谱范围的面形所需的去除函数尺寸。成功的加工了100×100mm的连续相位板,在6小时内将其误差面形RMS值加工到52nm。  相似文献   
9.
徐超  胡皓  彭小强  李信磊  林之凡 《航空学报》2021,42(10):524914-524914
采用超精密车削加工的复杂曲面铝反射镜只能满足红外光学系统的应用需求,若要满足更高需求的应用场合,需要进一步提升反射镜面形精度。磁流变抛光能够进行确定性修形,在复杂曲面加工中具有独特优势,但是复杂曲面连续变化的面形特征,在磁流变抛光时会导致去除函数不稳定,影响误差收敛效率和加工精度。从高精度复杂曲面铝反射镜的应用需求出发,提出了复杂曲面局部区域磁流变抛光去除函数的动态建模方法,给出了驻留时间求解算法,以平均曲率变化最小为原则,设计了抛光路径优化算法,针对该算法计算速度慢的问题,提出了优化策略,并通过试验进行了验证,最终加工的复杂曲面铝反射镜的面形误差为0.216λ PV、0.033λ RMS (λ=632.8 nm)。  相似文献   
10.
介绍了一种结构简单,但性能稳定、精度高的电感传感器.并介绍了操作方便、置信度高、可用于短工件测量的直线度空间域的组合测量方法.利用它们进行超精密直线度测量,具有良好的效果.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号