首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   1篇
航天技术   1篇
综合类   1篇
航天   4篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2000年   1篇
  1985年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
A new MPD (magnetoplasmadynamic) arcjet system was developed and tested to demonstrate its technological readiness for flight model design. The MPD arcjet, of quasisteady type, was repetitively operated. In the endurance test, more than 105 shots were cleared in continuous operation. Some components cleared more than 106 shots. Cathode erosion was markedly reduced through the use of newly developed material. Thermal data were obtained which define the thermal interface between the spacecraft and the MPD arcjet system. Waste heat from the electrodes was found to be 20–30% of the input power and to vary with repetition frequency. No technological difficulties are foreseen for further continuation of repetitive operation.  相似文献   
2.
In this paper, we investigate the possibility of the use of the Lorentz force, which acts on charged satellite when it is moving through the magnetic field, as a means of satellite attitude control. We first derive the equations of attitude motion of charged satellite and then investigate the stability of the motion. Finally we propose an attitude control method using the Lorentz force. Our method requires moderate charge level for future Lorentz-augmented satellite.  相似文献   
3.
The present paper describes thrust measurement results for an arcjet thruster using Dimethyl ether (DME) as the propellant. DME is an ether compound and can be stored as a liquid due to its relatively low freezing point and preferable vapor pressure. The thruster successfully produced high-voltage mode at DME mass flow rates above 30 mg/s, whereas it yielded low-voltage mode below 30 mg/s. Thrust measurements yielded a thrust of 0.15 N and a specific impulse of 270 s at a mass flow rate of 60 mg/s with a discharge power of 1300 W. The DME arcjet thruster was comparable to a conventional one for thrust and discharge power.  相似文献   
4.
One of the advantages that drive nanosatellite development is the potential of multi-point observation through constellation operation. However, constellation deployment of nanosatellites has been a challenge, as thruster operations for orbit maneuver were limited due to mass, volume, and power. Recently, a de-orbiting mechanism using magnetic torquer interaction with space plasma has been introduced, so-called plasma drag. As no additional hardware nor propellant is required, plasma drag has the potential in being used as constellation deployment method. In this research, a novel constellation deployment method using plasma drag is proposed. Orbit decay rate of the satellites in a constellation is controlled using plasma drag in order to achieve a desired phase angle and phase angle rate. A simplified 1D problem is formulated for an elementary analysis of the constellation deployment time. Numerical simulations are further performed for analytical analysis assessment and sensitivity analysis. Analytical analysis and numerical simulation results both agree that the constellation deployment time is proportional to the inverse square root of magnetic moment, the square root of desired phase angle and the square root of satellite mass. CubeSats ranging from 1 to 3?U (1–3?kg nanosatellites) are examined in order to investigate the feasibility of plasma drag constellation on nanosatellite systems. The feasibility analysis results show that plasma drag constellation is feasible on CubeSats, which open up the possibility of CubeSat constellation missions.  相似文献   
5.
高可用性是基于网络的电子商务系统的关键要素.文中首先介绍了一个用于日本药局的商务系统OPEN-STOCK,重点给出了它的高可用性解决方案,介绍了该方案中各类系统信息的作用范围,定义了商务系统服务状态相关的参数表,给出了负载平衡的三种调度算法,以及网络系统参数获取和系统服务状态侦测的实现方法.该方案具有规模可调整以及面向应用的特征,它通过实现负载平衡以达到系统的高性能,并支持容错而获得系统的高可靠性.该电子商务系统及其技术已经在日本市场投入应用,并达到了设计目标.  相似文献   
6.
Pilot uncertainty in aircraft response under automatic flight control has triggered aircraft accidents/incidents in the past. This uncertainty compels a pilot to disengage autopilot and switch to manual control. However, the decision to disengage autopilot and when to do it can be difficult: especially if there is not enough time to monitor the cockpit displays, for instance while countering atmospheric turbulence. Against this background, we proposed the “human as a control module” architecture for harmonizing pilot and autopilot controls. The architecture blends pilot maneuver with autopilot control instead of switching between them when simultaneous inputs are given to the aircraft. By automatically adjusting pilot and autopilot control inputs, the architecture avoids overlaps of both control authorities and helps to circumvent the effect of conflicting actions. This paper applies the architecture to the situations of past aircraft incidents which had been caused by the transfer from autopilot control to pilot maneuver after encountering atmospheric turbulence. The effectiveness of the architecture is evaluated via simulation study for the specific incident examples. Furthermore, this paper extends the architecture with an Extended Kalman Filter (EKF) based observer and evaluates its robustness under errors in wind estimation.  相似文献   
7.
(MUSCAT) is a high value computation tool for analyzing spacecraft–plasma interaction, whose typical example is charging–arcing issue, corresponding to spacecrafts in LEO, GEO and PEO. JAXA and Kyushu Institute of Technology (KIT) started the development as a joint project in November 2004 and the final version of MUSCAT was released in March 2007. The final version includes many important features to simulate spacecraft–plasma interaction and the features can be separated into four parts. The first part is its GUI named “Vineyard”. By using Vineyard, MUSCAT users can build a satellite model including not only its geometry but also material properties of the surface. As for the second part, MUSCAT includes many kinds of effects derived from space plasma environment as well as electrical functions of spacecraft. For the third part, MUSCAT can work on parallel workstation with multi-CPU. The last feature is that the computation result by MUSCAT was thoroughly validated by experiments in plasma chamber. The numerical result shows very good agreement with the code validation experiment. We also conducted trial computation of charging analysis on Greenhouse gases Observing Satellite (GOSAT) with MUSCAT. One purpose of the computation was prediction of charging status of GOSAT for the real satellite design in combination with the ground test. The other is performance assessment of MUSCAT. After the joint project, expansion and maintenance of MUSCAT will be carried out by “MUSCAT Space Engineering Ltd” which is a new enterprise made of the development team. In future we will try to conduct MUSCAT computation for various spacecrafts and also try to add useful function such as 3D CAD compatibility.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号