首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
航空   7篇
航天技术   7篇
航天   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  2001年   1篇
排序方式: 共有15条查询结果,搜索用时 93 毫秒
1.
The huge potential drop between the footpoints of the closed field lines in the twisted magnetospheres of magnetars may accelerate electrons up to very high energies, γ ? 106. On the other hand, the comparison between the observed spectra of magnetars and spectra obtained by accurate theoretical models seems to favor of a picture in which the magnetosphere is filled by “slow” electrons (v ? 0.8c), rather than by ultra-relativistic particles.  相似文献   
2.
In this paper, we discuss our first attempts to model the broadband persistent emission of magnetars within a self-consistent, physical scenario. We present the predictions of a synthetic model that we calculated with a new Monte Carlo 3D radiative code. The basic idea is that soft thermal photons (e.g. emitted by the star surface) can experience resonant cyclotron upscattering by a population of relativistic electrons treated in the twisted magnetosphere. Our code is specifically tailored to work in the ultra-magnetized regime; polarization and QED effects are consistently accounted for, as well different configurations for the magnetosphere. We discuss the predicted spectral properties in the 0.1–1000 keV range, the polarization properties, and we present the model application to a sample of magnetars soft X-ray spectra.  相似文献   
3.
Binary or multiple stellar systems, constituting almost a third of the content of the Milky Way, represent a high priority astronomical target due to their repercussions on the stellar dynamical and evolutionary parameters. Moreover the spectral study of such class of stars allows to better constrain the evolutionary theories of the Galactic stellar populations. By resolving the members of stellar systems through photometric observations we are able to perform more detailed measurements to infer their mass. In this paper we investigate the feasibility of a cubesat based mission including an optical payload to directly optically discriminate the members of a selected sample of binary systems. The scientific targets, consisting 11?M class dwarf stars binary systems, have been extracted from the already studied Riaz catalogue. These subset has been selected considering the star distance, the members angular separation, and the distance from the Galactic plane (due to limit the background and foreground contamination). The satellite concept is based on a 6 unit Cubesat embedding some commercial off the shelf components and an ad hoc designed optical payload occupying almost 4 units. The optical configuration has been chosen in order to fit the angular resolution requirements, as derived from the target characteristics. Moreover, according to the optical analysis and the computed field of view some requirements on the attitude control system have been inferred and fulfilled by the component selection. The paper is organized as in the following: a brief scientific introduction is made; consequently the project is described with particular attention to the optical design and the standard sub-systems; finally the conclusions are drawn and the future perspectives are investigated.  相似文献   
4.
Understanding transport of thermal and suprathermal particles is a fundamental issue in laboratory, solar-terrestrial, and astrophysical plasmas. For laboratory fusion experiments, confinement of particles and energy is essential for sustaining the plasma long enough to reach burning conditions. For solar wind and magnetospheric plasmas, transport properties determine the spatial and temporal distribution of energetic particles, which can be harmful for spacecraft functioning, as well as the entry of solar wind plasma into the magnetosphere. For astrophysical plasmas, transport properties determine the efficiency of particle acceleration processes and affect observable radiative signatures. In all cases, transport depends on the interaction of thermal and suprathermal particles with the electric and magnetic fluctuations in the plasma. Understanding transport therefore requires us to understand these interactions, which encompass a wide range of scales, from magnetohydrodynamic to kinetic scales, with larger scale structures also having a role. The wealth of transport studies during recent decades has shown the existence of a variety of regimes that differ from the classical quasilinear regime. In this paper we give an overview of nonclassical plasma transport regimes, discussing theoretical approaches to superdiffusive and subdiffusive transport, wave–particle interactions at microscopic kinetic scales, the influence of coherent structures and of avalanching transport, and the results of numerical simulations and experimental data analyses. Applications to laboratory plasmas and space plasmas are discussed.  相似文献   
5.
The aim of this paper is to identify the basic strategic orientations of some of the world's main space agencies. This study focuses on the Brazilian, French, European, Japanese, Indian and Russian agencies. Basic strategic orientations indicate the real space exploration objectives of large countries. This is useful because there are some ambiguous areas in the formal strategic documents published by these agencies. The results highlight the common objectives of the agencies studied, which is to have an important role in international political leadership even considering the specific objectives related to the economic and social contexts of the individual countries.  相似文献   
6.
7.
The transport of energetic particles in the presence of magnetic turbulence can exhibit a variety of regimes different from the standard quasilinear diffusion. Here we discuss a number of solar and space problems where nonquasilinear diffusion is found, and then we illustrate anomalous transport regimes, for which the mean square deviation grows nonlinearly with time. In particular, we concentrate on superdiffusive regimes, and show what is the theoretical framework which is to be used to describe superdiffusion. We discuss the results of numerical simulations which show that superdiffusive and subdiffusive regimes are possible, and describe data analyses which allow to single out the superdiffusive transport from the observation of energetic particle profiles upstream of interplanetary shocks. The implications of superdiffusion on the efficiency of wave particle interactions are also discussed.  相似文献   
8.
Magnetic turbulence is found in most space plasmas, including the Earth’s magnetosphere, and the interaction region between the magnetosphere and the solar wind. Recent spacecraft observations of magnetic turbulence in the ion foreshock, in the magnetosheath, in the polar cusp regions, in the magnetotail, and in the high latitude ionosphere are reviewed. It is found that: 1. A large share of magnetic turbulence in the geospace environment is generated locally, as due for instance to the reflected ion beams in the ion foreshock, to temperature anisotropy in the magnetosheath and the polar cusp regions, to velocity shear in the magnetosheath and magnetotail, and to magnetic reconnection at the magnetopause and in the magnetotail. 2. Spectral indices close to the Kolmogorov value can be recovered for low frequency turbulence when long enough intervals at relatively constant flow speed are analyzed in the magnetotail, or when fluctuations in the magnetosheath are considered far downstream from the bow shock. 3. For high frequency turbulence, a spectral index α?2.3 or larger is observed in most geospace regions, in agreement with what is observed in the solar wind. 4. More studies are needed to gain an understanding of turbulence dissipation in the geospace environment, also keeping in mind that the strong temperature anisotropies which are observed show that wave particle interactions can be a source of wave emission rather than of turbulence dissipation. 5. Several spacecraft observations show the existence of vortices in the magnetosheath, on the magnetopause, in the magnetotail, and in the ionosphere, so that they may have a primary role in the turbulent injection and evolution. The influence of such a turbulence on the plasma transport, dynamics, and energization will be described, also using the results of numerical simulations.  相似文献   
9.
Monitoring of warm distribution in water is fundamental to understand the performance and functioning of reservoirs and lakes. Surface water temperature is a key parameter in the physics of aquatic systems processes since it is closely related to the energy fluxes through the water–atmosphere interface. Remote sensing applied to water quality studies in inland waterbodies is a powerful tool that can provide additional information difficult to achieve by other means. The combination of good real-time coverage, spatial resolution and free availability of data makes Landsat system a proper alternative. Many papers have developed algorithms to retrieve surface temperature (principally, land surface temperature) from at-sensor and surface emissivity data. The aim of this study is to apply the single-channel generalized method (SCGM) developed by Jiménez-Muñoz and Sobrino (2003) for the estimation of water surface temperature from Landsat 7 ETM+ thermal bands. We consider a constant water emissivity value (0.9885) and we compare the results with radiative transfer classic method (RTM).  相似文献   
10.
The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its new target comet 67 P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investigations (RSI) experiment address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field, its interplanetary orbit perturbed by nongravitational forces, its size and shape, its internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. The masses of two asteroids, Steins and Lutetia, shall be determined during flybys in 2008 and 2010, respectively. Secondary objectives are the radio sounding of the solar corona during the superior conjunctions of the spacecraft with the Sun during the cruise phase. The radio carrier links of the spacecraft Telemetry, Tracking and Command (TT&C) subsystem between the orbiter and the Earth will be used for these investigations. An Ultrastable oscillator (USO) connected to both transponders of the radio subsystem serves as a stable frequency reference source for both radio downlinks at X-band (8.4 GHz) and S-band (2.3 GHz) in the one-way mode. The simultaneous and coherent dual-frequency downlinks via the High Gain Antenna (HGA) permit separation of contributions from the classical Doppler shift and the dispersive media effects caused by the motion of the spacecraft with respect to the Earth and the propagation of the signals through the dispersive media, respectively. The investigation relies on the observation of the phase, amplitude, polarization and propagation times of radio signals transmitted from the spacecraft and received with ground station antennas on Earth. The radio signals are affected by the medium through which the signals propagate (atmospheres, ionospheres, interplanetary medium, solar corona), by the gravitational influence of the planet on the spacecraft and finally by the performance of the various systems involved both on the spacecraft and on ground.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号