首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   2篇
航空   5篇
航天技术   2篇
  2021年   1篇
  2018年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 656 毫秒
1
1.
2.
This article proposes a multidisciplinary design and optimization (MDO) strategy for the conceptual design of a multistage ground-based interceptor (GBI) using hybrid optimization algorithm, which associates genetic algorithm (GA) as a global optimizer with sequential quadratic programming (SQP) as a local optimizer. The interceptor is comprised of a three-stage solid propulsion system for an exoatmospheric boost phase intercept (BPI). The interceptor's duty is to deliver a kinetic kill vehicle (KKV) to the optimal position in space to accomplish the mission of intercept. The modules for propulsion, aerodynamics, mass properties and flight dynamics are integrated to produce a high fidelity model of the entire vehicle. The propulsion module comprises of solid rocket motor (SRM) grain design, nozzle geometry design and performance prediction analysis. Internal ballistics and performance prediction parameters are calculated by using lumped parameter method. The design objective is to minimize the gross lift off mass (GLOM) of the interceptor under the mission constraints and performance objectives. The proposed design and optimization methodology provide designers with an efficient and powerful approach in computation during designing interceptor systems.  相似文献   
3.
Design and Optimization of 3D Radial Slot Grain Configuration   总被引:2,自引:1,他引:1  
Upper stage solid rocket motors (SRMS) for launch vehicles require a highly efficient propulsion system. Grain design proves to be vital in terms of minimizing inert mass by adopting a high volumetric efficiency with minimum possible sliver. In this article, a methodology has been presented for designing three-dimensional (3D) grain configuration of radial slot for upper stage solid rocket motors. The design process involves parametric modeling of the geometry in computer aided design (CAD) software through...  相似文献   
4.
A way to improve the accuracy of the three-body problem model is taking into account the eccentricity of primary attractors. Elliptic Restricted Three-Body Problem (ER3BP) is a model for studying spacecraft trajectory within the three-body problem such that the orbital eccentricity of primaries is reflected in it. As the principal cause of perturbation in the employed dynamical model, the primaries eccentricity changes the structure of orbits compared to the ideal Circular Restricted Three-Body Problem (CR3BP). It also changes the attitude behavior of a spacecraft revolving along periodic orbits in this regime. In this paper, the coupled orbit-attitude dynamics of a spacecraft in the ER3BP are exploited to find precise periodic solutions as the spacecraft is considered to be in planar orbits around Lagrangian points and Distant Retrograde Orbits (DRO). Periodic solutions are repetitious behaviors in which spacecraft whole dynamics are repeated periodically, these periodic behaviors are the main interest of this study because they are beneficial for future mission designs and allow delineation of the system’s governing dynamics. Previous studies laid the foundation for spacecraft stability analysis or studying pitch motion of spacecraft in the ER3BP regime. While in this paper, at first, initial guesses for correction algorithms were derived through verified search methods, then correction algorithms were used to refine calculated orbit-attitude periodic behaviors. Periodic orbits and full periodic solutions are portrayed and compared to previous studies and simpler models. Natural periodic solutions are valuable information eventuate in the longer functional lifetime of spacecraft. Since the problem assumption considered in this paper is much closer to real mission conditions, these results may be the means to use natural bounded motions in the actual operational environment.  相似文献   
5.
In this paper,design and optimization technique of slotted tube grain for solid rocket motors has been discussed.In doing so,the design objectives and constraints have been set,geometric parameters identified,performance prediction parameters calculated,thereafter preliminary designs completed and finally optimal design reached.Geometric model for slotted tube grain configuration has been developed.Average thrust has been taken as the objective function with constraints of burning time,mass of propellant,fixed length and diameter of chamber case.Lumped parameter method has been used for calculating the performance prediction parameters.A set of preliminary designs has been completed and an analysis of these results conducted.Although all the preliminary results fulfill the design requirements in terms of objective function and constraints,however in order to attain the optimal design,Sequential quadratic programming optimization technique has been adopted.As the slotted tube grain geometry is totally dependent upon various independent variables and each of these variables has a bearing on explicit characteristic of grain designing,hence affects of the independent variables on performance parameters have been examined,thus variation laws have been developed.Basing on the variation laws and the analysis of preliminary design results,upper and lower limits have been defined for the independent geometric variables and an initial guess provided for conducting optimization.Results attained exhibits that an optimal result has been attained and the value of objective function has been maximized.All the design constraint limits have also been met while ensuring sound values of volumetric loading fraction,web fraction and neutrality.This methodology of design and optimization of slotted tube grain for solid rocket motors can be used by engineers as a reference guide for actual design and engineering purposes.   相似文献   
6.
The research effort outlined the application of a computer aided design(CAD)-centric technique to the design and optimization of solid rocket motor Finocyl(fin in cylinder) grain using simulated annealing.The proper method for constructing the grain configuration model,ballistic performance and optimizer integration for analysis was presented.Finocyl is a complex grain configuration,requiring thirteen variables to define the geometry.The large number of variables not only complicates the geometrical construction but also optimization process.CAD representation encapsulates all of the geometric entities pertinent to the grain design in a parametric way,allowing manipulation of grain entity(web),performing regression and automating geometrical data calculations.Robustness to avoid local minima and efficient capacity to explore design space makes simulated annealing an attractive choice as optimizer.It is demonstrated with a constrained optimization of Finocyl grain geometry for homogeneous,isotropic propellant,uniform regression,and a quasi-steady,bulk mode internal ballistics model that maximizes average thrust for required deviations from neutrality.  相似文献   
7.
Circular thin orthotropic shells have many applications in the aerospace industry such as aircraft, missile and launcher. An analytical study is conducted in this paper to understand the characteristic of sound transmission through an orthotropic cylindrical shell. The shell is assumed to be infinitely long and is subjected to a plane wave with uniform airflow in the external fluid medium. An exact solution is obtained by solving the first-order shear deformation and acoustic wave equations simultaneously. The transmission losses (TLs) obtained from the numerical solution are compared with those of other authors. Additionally, in comparison with the classical thin shell theory (CST), the first-order shear deformation theory (FSDT) calculates with the best degree of accuracy. Numerical results are used to show the effects of fiber direction, geometrical properties, Mach number and material properties.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号