首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
航空   5篇
航天技术   6篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2001年   1篇
  1984年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
2.
3.
We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and gamma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.  相似文献   
4.
We study the extremely complex active region (AR) NOAA 10314, that was observed from March 13–19, 2003. This AR was the source of several energetic events, among them two major (X class) flares, along a few days. We follow the evolution of this AR since the very first stages of its emergence. From the photospheric evolution of the magnetic polarities observed with SOHO/MDI we infer the morphology of the flux tube that originates the AR. Using a computation technique that combines Local Correlation Tracking with magnetic induction constrains, we compute the rate of magnetic helicity injection at the photosphere during the observed evolution. From our results we conclude that the AR originated by the emergence of a severely deformed magnetic flux tube having a dominantly positive magnetic helicity.  相似文献   
5.
The Time Transfer by Laser Link (T2L2) is a very high resolution time transfer technique based on the recording of arrival times of laser pulses at the satellite. T2L2 was designed to achieve time stability in the range of 1 ps over 1000 s and an accuracy better than 100 ps. The project is in operation onboard the Jason-2 satellite since June 2008. The principle is based on the Satellite Laser Ranging (SLR) technology; it uses the input of 20–25 SLR stations of the international laser network which participate in the tracking. This paper focuses on the data reduction process which was developed specifically to transform the raw information given by both space instrument and ground network: first to identify the triplets (ground and onboard epochs and time of flight of the laser pulse), second to estimate a usable product in terms of ground-to-space time transfer (including instrumental corrections), and thirdly to produce synchronization between any pair of remote ground clocks. In describing the validation of time synchronizations, the paper opens a way for monitoring the time difference between ultra-stable clocks thanks to a laser link at a few ps level for Common View passes. It highlights however that without accurately characterizing the onboard oscillator of Jason-2 and knowing the unavailability of time calibrations of SLR stations generally, time transfer over intercontinental distances remain difficult to be accurately estimated.  相似文献   
6.
Since 2004, we observe satellites in the geostationary orbit with a network of robotic ground based fully automated telescopes called TAROT. One of them is located in France and the second at ESO, La Silla, Chile. The system processes the data in real time. Its wide field of view is useful for the discovery, the systematic survey and for the tracking of both catalogued and un-catalogued objects. We present a new source extraction algorithm based on morphological mathematic, which has been tested and is currently under implementation in the standard pipeline. Using this method, the observation strategy will correlate the measurements of the same object on successive images and give better detection rate and false alarm rate than the previous one. The overall efficiency and quality of the survey of the geostationary orbit has drastically improved and we can now detect satellites and debris in different orbits like Geostationary Transfer Orbit (GTO). Results obtained in real conditions with TAROT are presented.  相似文献   
7.
Until recently, only about 10 % of the total intracluster gas volume had been studied with high accuracy, leaving a vast region essentially unexplored. This is now changing and a wide area of hot gas physics and chemistry awaits discovery in galaxy cluster outskirts. Also, robust large-scale total mass profiles and maps are within reach. First observational and theoretical results in this emerging field have been achieved in recent years with sometimes surprising findings. Here, we summarize and illustrate the relevant underlying physical and chemical processes and review the recent progress in X-ray, Sunyaev–Zel’dovich, and weak gravitational lensing observations of cluster outskirts, including also brief discussions of technical challenges and possible future improvements.  相似文献   
8.
The T2L2 (Time Transfer by Laser Link) project, developed by CNES and OCA will permit the synchronization of remote ultra stable clocks and the determination of their performances over intercontinental distances. The principle of the experiment derives from Satellite Laser Ranging (SLR) technology with dedicated space equipment. T2L2 was accepted in 2005 to be on board the Jason2 altimetry satellite. The payload consists of both event timer and photo detection modules. The system uses the ultra-stable quartz oscillator of DORIS as on-board reference clock on one hand, and the Laser Reflector Array, making T2L2 a real two-way time transfer system on the other hand. The expected time stability of the T2L2 instrument (detection and timing), referenced by the DORIS oscillator and including all internal error sources should be at the level of 10–12 ps at 1 s and <1 ps at 1000 s. The metrological specifications of T2L2 should permit to maintain a precision of 1 to a few ps when measuring the phase of a clock during around 1000 seconds.  相似文献   
9.
We review the methods adopted to reconstruct the mass profiles in X-ray luminous galaxy clusters. We discuss the limitations and the biases affecting these measurements and how these mass profiles can be used as cosmological proxies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号