首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
Magnetic clouds are the interplanetary manifestation of coronal mass ejections, which are transient expulsions of major quantities of magnetized plasma, from the Sun toward the heliosphere. The magnetic flux and helicity are two key physical magnitudes to track solar structures from the photosphere-corona to the interplanetary medium. To determine the content of flux and helicity in magnetic clouds, we have to know their 3D structure. However, since spacecrafts register data along a unique direction, several aspects of their global configuration cannot be observed. We present a method to estimate the magnetic flux and the magnetic helicity per unit length in magnetic clouds, directly from in situ magnetic observations, assuming only a cylindrical symmetry for the magnetic field configuration in the observed cross-section of the cloud. We select a set of 20 magnetic clouds observed by the spacecraft Wind and estimate their magnetic flux and their helicity per unit length. We compare the results obtained from our direct method with those obtained under the assumption of a helical linear force-free field. This direct method improves previous estimations of helicity in clouds.  相似文献   

2.
We present the evolution of magnetic field and relationship with the magnetic (current) helicity in solar active regions from a series of photospheric vector magnetograms obtained at Huairou Solar Observing Station near Beijing, and also longitudinal magnetograms by MDI of SOHO, white light and 171 Å images by TRACE and soft X-ray images by Yohkoh.The conclusions in the analysis of the formation process of complex and delta magnetic configuration in some super active regions are the following: (1) The magnetic shear and gradient provide the non-potentiality of the magnetic field of active regions reflecting the existence of electric current. (2) Some of large-scale delta active regions could be due to the emergence of highly sheared non-potential magnetic flux bundles from the subatmosphere with amount of magnetic helicity, in addition to the emergence of twisted magnetic ropes. (3) We also present some results on the study of the magnetic (current) helicity in solar active regions.  相似文献   

3.
Mounting observational evidence of the emergence of twisted magnetic flux tubes through the photosphere have now been published. Such flux tubes, formed by the solar dynamo and transported through the convection zone, eventually reach the solar atmosphere. Their accumulation in the solar corona leads to flares and coronal mass ejections. Since reconnections occur during the evolution of the flux tubes, the concepts of twist and magnetic stress become inappropriate. Magnetic helicity, as a well preserved quantity, in particular in plasma with high magnetic Reynolds number, is a more suitable physical quantity to use, even if reconnection is involved.  相似文献   

4.
Active regions on the solar surface are known to possess magnetic helicity, which is predominantly negative in the northern hemisphere and positive in the southern hemisphere. Choudhuri et al. [Choudhuri, A.R. On the connection between mean field dynamo theory and flux tubes. Solar Phys. 215, 31–55, 2003] proposed that the magnetic helicity arises due to the wrapping up of the poloidal field of the convection zone around rising flux tubes which form active regions. Choudhuri [Choudhuri, A.R., Chatterjee, P., Nandy, D. Helicity of solar active regions from a dynamo model. ApJ 615, L57–L60, 2004] used this idea to calculate magnetic helicity from their solar dynamo model. Apart from getting broad agreements with observational data, they also predict that the hemispheric helicity rule may be violated at the beginning of a solar cycle. Chatterjee et al. [Chatterjee, P., Choudhuri, A.R., Petrovay, K. Development of twist in an emerging magnetic flux tube by poloidal field accretion. A&A 449, 781–789, 2006] study the penetration of the wrapped poloidal field into the rising flux tube due to turbulent diffusion using a simple 1-d model. They find that the extent of penetration of the wrapped field will depend on how weak the magnetic field inside the rising flux tube becomes before its emergence. They conclude that more detailed observational data will throw light on the physical conditions of flux tubes just before their emergence to the photosphere.  相似文献   

5.
We present a combined analysis of the applications of the weighted horizontal magnetic gradient (denoted as WGM in Korsós et al. (2015)) method and the magnetic helicity tool (Berger and Field, 1984) employed for three active regions (ARs), namely NOAA AR 11261, AR 11283 and AR 11429. We analysed the time series of photospheric data from the Solar Dynamics Observatory taken between August 2011 and March 2012. During this period the three ARs produced a series of flares (eight M- and six X-class) and coronal mass ejections (CMEs). AR 11261 had four M-class flares and one of them was accompanied by a fast CME. AR 11283 had similar activities with two M- and two X-class flares, but only with a slow CME. Finally, AR 11429 was the most powerful of the three ARs as it hosted five compact and large solar flare and CME eruptions. For applying the WGM method we employed the Debrecen sunspot data catalogue, and, for estimating the magnetic helicity at photospheric level we used the Space-weather HMI Active Region Patches (SHARP’s) vector magnetograms from SDO/HMI (Solar Dynamics Observatory/Helioseismic and Magnetic Imager). We followed the evolution of the components of the WGM and the magnetic helicity before the flare and CME occurrences. We found a unique and mutually shared behaviour, called the U-shaped pattern, of the weighted distance component of WGM and of the shearing component of the helicity flux before the flare and CME eruptions. This common pattern is associated with the decreasing-receding phases yet reported only known to be a necessary feature prior to solar flare eruption(s) but found now at the same time in the evolution of the shearing helicity flux. This result leads to the conclusions that (i) the shearing motion of photospheric magnetic field may be a key driver for solar eruption in addition to the flux emerging process, and that (ii) the found decreasing-approaching pattern in the evolution of shearing helicity flux may be another precursor indicator for improving the forecasting of solar eruptions.  相似文献   

6.
利用多卫星多波段的综合观测数据,通过追踪光球表面等离子体速度分析计算了耀斑爆发前后磁螺度的变化,发现耀斑爆发前活动区中光球表面存在强的水平剪切运动,活动区磁螺度的注入主要由这种剪切运动所产生;使用CESE-MHD-NLFFF重建了耀斑爆发前后活动区的磁场位形,推测出耀斑过程中存在磁绳结构的抛射.基于这些分析,给出了这一螺旋状抛射结构的形成机制:爆发前暗条西侧足点的持续剪切运动驱动磁通量绳增加扭转,高度扭缠的通量绳与东侧足点附近的开放磁力线重联并与东侧足点断开,进而向外抛出并伴随解螺旋运动.另外,利用1AU处WIND卫星的观测数据在对应的行星际日冕物质抛射中找到典型磁云的观测特征.这表明除了传统上双足点均在太阳表面的磁云模型,这种单足点固定于太阳表面的磁通量绳爆发图景同样可能在行星系际空间形成磁云结构.研究结果对进一步认识磁云结构具有重要意义.   相似文献   

7.
Emergence of complex magnetic flux in the solar active regions lead to several observational effects such as a change in sunspot area and flux embalance in photospheric magnetograms. The flux emergence also results in twisted magnetic field lines that add to free energy content. The magnetic field configuration of these active regions relax to near potential-field configuration after energy release through solar flares and coronal mass ejections. In this paper, we study the relation of flare productivity of active regions with their evolution of magnetic flux emergence, flux imbalance and free energy content. We use the sunspot area and number for flux emergence study as they contain most of the concentrated magnetic flux in the active region. The magnetic flux imbalance and the free energy are estimated using the HMI/SDO magnetograms and Virial theorem method. We find that the active regions that undergo large changes in sunspot area are most flare productive. The active regions become flary when the free energy content exceeds 50% of the total energy. Although, the flary active regions show magnetic flux imbalance, it is hard to predict flare activity based on this parameter alone.  相似文献   

8.
Magnetic Clouds (MCs) are the interplanetary manifestation of Coronal Mass Ejections. These huge astrophysical objects travel from the Sun toward the external heliosphere and can reach the Earth environment. Depending on their magnetic field orientation, they can trigger intense geomagnetic storms. The details of the magnetic configuration of clouds and the typical values of their magnetohydrodynamic magnitudes are not yet well known. One of the most important magnetohydrodynamic quantities in MCs is the magnetic helicity. The helicity quantifies several aspects of a given magnetic structure, such as the twist, kink, number of knots between magnetic field lines, linking between magnetic flux tubes, etc. The helicity is approximately conserved in the solar atmosphere and the heliosphere, and it is very useful to link solar phenomena with their interplanetary counterpart. Since a magnetic cloud carries an important amount of helicity when it is ejected from the solar corona, estimations of the helicity content in clouds can help us to understand its evolution and its coronal origin. In situ observations of magnetic clouds at one astronomical unit are in agreement with a local helical magnetic structure. However, since spacecrafts only register data along a unique direction, several aspects of the global configuration of clouds cannot be observed. In this paper, we review the general properties of magnetic clouds and different models for their magnetic structure at one astronomical unit. We describe the corresponding techniques to analyze in situ measurements. We also quantify their magnetic helicity and compare it with the release of helicity in their solar source for some of the analyzed cases.  相似文献   

9.
We present and discuss here the observations of a small long duration GOES B-class flare associated with a quiescent filament eruption, a global EUV wave and a CME on 2011 May 11. The event was well observed by the Solar Dynamics Observatory (SDO), GONG Hα, STEREO and Culgoora spectrograph. As the filament erupted, ahead of the filament we observed the propagation of EIT wave fronts, as well as two flare ribbons on both sides of the polarity inversion line (PIL) on the solar surface. The observations show the co-existence of two types of EUV waves, i.e., a fast and a slow one. A type II radio burst with up to the third harmonic component was also associated with this event. The evolution of photospheric magnetic field showed flux emergence and cancellation at the filament site before its eruption.  相似文献   

10.
Coronal mass ejections (CMEs), which are among the most magnificent solar eruptions, are a major driver of space weather and can thus affect diverse human technologies. Different processes have been proposed to explain the initiation and release of CMEs from solar active regions (ARs), without reaching consensus on which is the predominant scenario, and thus rendering impossible to accurately predict when a CME is going to erupt from a given AR. To investigate AR magnetic properties that favor CMEs production, we employ multi-spacecraft data to analyze a long duration AR (NOAA 11089, 11100, 11106, 11112 and 11121) throughout its complete lifetime, spanning five Carrington rotations from July to November 2010. We use data from the Solar Dynamics Observatory to study the evolution of the AR magnetic properties during the five near-side passages, and a proxy to follow the magnetic flux changes when no magnetograms are available, i.e. during far-side transits. The ejectivity is studied by characterizing the angular widths, speeds and masses of 108 CMEs that we associated to the AR, when examining a 124-day period. Such an ejectivity tracking was possible thanks to the multi-viewpoint images provided by the Solar-Terrestrial Relations Observatory and Solar and Heliospheric Observatory in a quasi-quadrature configuration. We also inspected the X-ray flares registered by the GOES satellite and found 162 to be associated to the AR under study. Given the substantial number of ejections studied, we use a statistical approach instead of a single-event analysis. We found three well defined periods of very high CMEs activity and two periods with no mass ejections that are preceded or accompanied by characteristic changes in the AR magnetic flux, free magnetic energy and/or presence of electric currents. Our large sample of CMEs and long term study of a single AR, provide further evidence relating AR magnetic activity to CME and Flare production.  相似文献   

11.
The change of helicity for magnetic reconnection is calculated with the help of a kinematic model. The results confirm the approximate conservation of magnetic helicity for reconnection in an almost ideal plasma as e. g. the solar corona. Different examples show the contributions of twist or linkage of flux tubes to the total helicity change in the process. However, they also show that helicity may be produced for reconnection processes in more extended non-ideal regions which is due to new magnetic flux linked to the reconnected flux tubes.  相似文献   

12.
The amount of emergence and submergence of magnetized plasma and the horizontal motion of the footpoints of flux tubes might be crucial for the dynamics of the solar atmosphere. Although the rate of flux emergence and submergence can be observationally determined near the polarity inversion line (Chae et al., 2004), the same is not true for regions away from the PIL. Also, the horizontal motions cannot be directly measured in the solar photosphere. In this sense, the evolution of the photospheric magnetic field provides valuable information which can be used to estimate photospheric plasma flows since magnetic field and plasma are closely associated (frozen-in-condition). We used three methods to estimate the photospheric plasma motion from magnetic field observations. The methods were applied to photospheric vector magnetic field data of active region NOAA 9077, observed by the Huairou Solar Observing Station (HSOS) of the National Astronomical Observatories of China before and after the ‘Bastille Day’ flare on July 13th and 14th, 2000.  相似文献   

13.
We present an automated system for detecting, tracking, and cataloging emerging active regions throughout their evolution and decay using SOHO Michelson Doppler Interferometer (MDI) magnetograms. The SolarMonitor Active Region Tracking (SMART) algorithm relies on consecutive image differencing to remove both quiet-Sun and transient magnetic features, and region-growing techniques to group flux concentrations into classifiable features. We determine magnetic properties such as region size, total flux, flux imbalance, flux emergence rate, Schrijver’s R-value, R (a modified version of R), and Falconer’s measurement of non-potentiality. A persistence algorithm is used to associate developed active regions with emerging flux regions in previous measurements, and to track regions beyond the limb through multiple solar rotations. We find that the total number and area of magnetic regions on disk vary with the sunspot cycle. While sunspot numbers are a proxy to the solar magnetic field, SMART offers a direct diagnostic of the surface magnetic field and its variation over timescale of hours to years. SMART will form the basis of the active region extraction and tracking algorithm for the Heliophysics Integrated Observatory (HELIO).  相似文献   

14.
Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad–Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME–MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near-Earth environment.  相似文献   

15.
CMEs are due to physical phenomena that drive both, eruptions and flares in active regions. Eruptions/CMEs must be driven from initially force-free current-carrying magnetic field. Twisted flux ropes, sigmoids, current lanes and pattern in photospheric current maps show a clear evidence of currents parallel to the magnetic field. Eruptions occur starting from equilibria which have reached some instability threshold. Revisiting several data sets of CME observations we identified different mechanisms leading to this unstable state from a force free field. Boundary motions related to magnetic flux emergence and shearing favor the increase of coronal currents leading to the large flares of November 2003. On the other hand, we demonstrated by numerical simulations that magnetic flux emergence is not a sufficient condition for eruptions. Filament eruptions are interpreted either by a torus instability for an event occurring during the minimum of solar activity either by the diffusion of the magnetic flux reducing the tension of the restraining arcade. We concluded that CME models (tether cutting, break out, loss of equilibrium models) are based on these basic mechanisms for the onset of CMEs.  相似文献   

16.
The photometric-magnetic dynamical model handles the evolution of an individual sunspot as an autonomous nonlinear, though integrable, dynamical system. One of its consequences is the prediction of an upper limit of the sunspot areas. This upper limit is analytically expressed by the model parameters, while its calculated value is verified by the observational data. In addition, an upper limit for the magnetic strength inside the sunspot is also predicted, and then, we obtain the following significant result: The upper limit of the total magnetic flux in an active region is found to be of about 7.23 × 1023 Mx, namely, phenomenologically equal to the magnetic flux concentrated in the totality of the granules of the quiet Sun, having a typical maximum magnetic strength of about 12G. Therefore, the magnetic flux concentrated in an active region cannot exceed the magnetic flux concentrated in the photosphere as a whole.  相似文献   

17.
收集了Cluster卫星在2001-2005年间观测到的磁尾磁通量绳事件,并对磁通量绳(magnetic flux rope)形成及其内部磁场结构与行星际磁场(IMF)的关系作了统计研究.考虑磁通量绳被观测到时行星际磁场的条件,在所有73个磁通量绳事件中,行星际磁场By分量占有主导地位的事件有80%,且78%的事件具有与行星际磁场By分量相同方向的核心场.行星际磁场通过在磁层顶与地球磁场相互作用改变南北等离子体片内磁场相对方向,形成有利于磁通量绳形成的磁场位形,并且行星际磁场By分量的方向对磁通量绳内部核心场的方向具有决定性影响.从统计结果来看,磁通量绳的形成并不会依赖于行星际磁场Bz分量的方向.  相似文献   

18.
During the maximum of Solar Cycle 23, large active regions had a long life, spanning several solar rotations, and produced large numbers of X-class flares and CMEs, some of them associated to magnetic clouds (MCs). This is the case for the Halloween active regions in 2003. The most geoeffective MC of the cycle (Dst = −457) had its source during the disk passage of one of these active regions (NOAA 10501) on 18 November 2003. Such an activity was presumably due to continuous emerging magnetic flux that was observed during this passage. Moreover, the region exhibited a complex topology with multiple domains of different magnetic helicities. The complexity was observed to reach such unprecedented levels that a detailed multi-wavelength analysis is necessary to precisely identify the solar sources of CMEs and MCs. Magnetic clouds are identified using in situ measurements and interplanetary scintillation (IPS) data. Results from these two different sets of data are also compared.  相似文献   

19.
This review focuses on the processes that energize and trigger M- and X-class solar flares and associated flux-rope destabilizations. Numerical modeling of specific solar regions is hampered by uncertain coronal-field reconstructions and by poorly understood magnetic reconnection; these limitations result in uncertain estimates of field topology, energy, and helicity. The primary advances in understanding field destabilizations therefore come from the combination of generic numerical experiments with interpretation of sets of observations. These suggest a critical role for the emergence of twisted flux ropes into pre-existing strong field for many, if not all, of the active regions that produce M- or X-class flares. The flux and internal twist of the emerging ropes appear to play as important a role in determining whether an eruption will develop predominantly as flare, confined eruption, or CME, as do the properties of the embedding field. Based on reviewed literature, I outline a scenario for major flares and eruptions that combines flux-rope emergence, mass draining, near-surface reconnection, and the interaction with the surrounding field. Whether deterministic forecasting is in principle possible remains to be seen: to date no reliable such forecasts can be made. Large-sample studies based on long-duration, comprehensive observations of active regions from their emergence through their flaring phase are needed to help us better understand these complex phenomena.  相似文献   

20.
We report on two flare-productive adjacent active regions (ARs), with different levels of coronal mass ejection (CME) association. AR 10039 and AR 10044 produced strong X-ray flares during their disk passages. We examined the CME association rate of X-ray flares and found it to be different between the two ARs. AR 10039 was CME-rich with 72% association with flares, while AR 10044 was CME-poor with an association rate of only 14%. CMEs from the CME-rich AR were faster and wider than the ones from the CME-poor AR. The flare activity of AR 10044 was temporally concentrated over a short interval and spatially localized over a compact area between the major sun spots. We suggest that different pre-eruption evolution and magnetic configuration in the two regions might have contributed to the difference between the two ARs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号