首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
航空   8篇
航天技术   4篇
  2007年   3篇
  2002年   1篇
  1997年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
排序方式: 共有12条查询结果,搜索用时 312 毫秒
1.
Mercury is a very difficult planet to observe from the Earth, and space missions that target Mercury are essential for a comprehensive understanding of the planet. At the same time, it is also difficult to orbit because it is deep inside the Sun’s gravitational well. Only one mission has visited Mercury; that was Mariner 10 in the 1970s. This paper provides a brief history of Mariner 10 and the numerous imaginative but unsuccessful mission proposals since the 1970s for another Mercury mission. In the late 1990s, two missions—MESSENGER and BepiColombo—received the go-ahead; MESSENGER is on its way to its first encounter with Mercury in January 2008. The history, scientific objectives, mission designs, and payloads of both these missions are described in detail.  相似文献   
2.
The main objective of the Mutual Impedance Probe (MIP), part of the Rosetta Plasma Consortium (RPC), is to measure the electron density and temperature of Comet 67P/Churyumov-Gerasimenko’s coma, in particular inside the contact surface. Furthermore, MIP will determine the bulk velocity of the ionised outflowing atmosphere, define the spectral distribution of natural plasma waves, and monitor dust and gas activities around the nucleus. The MIP instrumentation consists of an electronics board for signal processing in the 7 kHz to 3.5 MHz range and a sensor unit of two receiving and two transmitting electrodes mounted on a 1-m long bar. In addition, the Langmuir probe of the RPC/LAP instrument that is at about 4 m from the MIP sensor can be used as a transmitter (in place of the MIP ones) and MIP as a receiver in order to have access to the density and temperature of plasmas at higher Debye lengths than those for which the MIP is originally designed.  相似文献   
3.
ACTIVE SPACECRAFT POTENTIAL CONTROL   总被引:1,自引:0,他引:1  
Charging of the outer surface or of the entire structure of a spacecraft in orbit can have a severe impact on the scientific output of the instruments. Typical floating potentials for magnetospheric satellites (from +1 to several tens of volts in sunlight) make it practically impossible to measure the cold (several eV) component of the ambient plasma. Effects of spacecraft charging are reduced by an entirely conductive surface of the spacecraft and by active charge neutralisation, which in the case of Cluster only deals with a positive potential. The Cluster spacecraft are instrumented with ion emitters of the liquid-metal ion-source type, which will produce indium ions at 5 to 8 keV energy. The operating principle is field evaporation of indium in the apex field of a needle. The advantages are low power consumption, compactness and high mass efficiency. The ion current will be adjusted in a feedback loop with instruments measuring the spacecraft potential (EFW and PEACE). A stand-alone mode is also foreseen as a back-up. The design and principles of the operation of the active spacecraft potential control instrument (ASPOC) are presented in detail. Flight experience with a similar instrument on the Geotail spacecraft is outlined.  相似文献   
4.
5.
The Giotto, Vega-1 and Vega-2 spacecraft flew through the environment of comet Halley at a relatively close range with velocities of the order of 70–80 km/s. The fore sections of their surface were bombarded by neutral molecules and dust grains which caused the emission of secondary electrons and sputtered ions. This paper makes use of the secondary electron current measurements performed on Vega-1 to infer some characteristic features of the cometary atmosphere. The total gas production rate is estimated to be of the order of 1030 molecules/s and is found to vary with time; the presence of a major jet is also detected at closest approach.  相似文献   
6.
Fulchignoni  M.  Ferri  F.  Angrilli  F.  Bar-Nun  A.  Barucci  M.A.  Bianchini  G.  Borucki  W.  Coradini  M.  Coustenis  A.  Falkner  P.  Flamini  E.  Grard  R.  Hamelin  M.  Harri  A.M.  Leppelmeier  G.W.  Lopez-Moreno  J.J.  McDonnell  J.A.M.  McKay  C.P.  Neubauer  F.H.  Pedersen  A.  Picardi  G.  Pirronello  V.  Rodrigo  R.  Schwingenschuh  K.  Seiff  A.  Svedhem  H.  Vanzani  V.  Zarnecki  J. 《Space Science Reviews》2002,104(1-4):395-431
The Huygens Atmospheric Structure Instrument (HASI) is a multi-sensor package which has been designed to measure the physical quantities characterising the atmosphere of Titan during the Huygens probe descent on Titan and at the surface. HASI sensors are devoted to the study of Titan's atmospheric structure and electric properties, and to provide information on its surface, whether solid or liquid. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
The surface of a spacecraft is submitted to the bombardment of dust grains and neutral molecules during an atmospheric re-entry or a cometary fly-by. These particles create secondary ions and electrons which form a plasma cloud around the body and control the electric potential of its surface. Computer simulation models are used to predict the structure and dynamic behaviour of the charged particle density distribution for the cases of planar and cylindrical bodies. It is found that an ion and an electron layer form in the vicinity of the surface at distances of the order of the ion and electron Debye lengths, respectively. The potential of the surface is positive on the average and is a function of the electron mean kinetic energy. A positive potential barrier develops at the location of the ion layer and its height is governed by the sum of the electron and ion mean kinetic energies. The threat caused by this interaction to the spacecraft and its instrumentation is discussed and an in-situ observation of this phenomenon is proposed as a possible diagnostic technique of the environment.  相似文献   
8.
The Vega-1 and Vega-2 wave and plasma measurements performed on 6 and 9 March 1986 in the environment of comet Halley present similar characteristics. Field spectral intensity of up to 5 mVm?1Hz?12 at 300 Hz is measured at closest approach; enhanced signals are detected in the whistler mode and in the vicinity of the lower hybrid resonance frequency within respective average distances of 130,000 km and 60,000 km from the nucleus. The plasma density rises from 100 cm?3 at 200,000 km up to 3000 cm?3 at 25,000 km. The spacecraft potential is of the order of +3 V beyond a distance of 200,000 km and decreases to about +0.5 V at 8,000 km.  相似文献   
9.
This paper is concerned mainly with the information which can be extracted from frequency-time spectra in the VLF range. The instrument used is the correlator which has a good frequency resolution (50 Hz) and time resolution (30 ms) in one magnetic and one electric component simultaneously. By suitable computer analysis, it is possible for instance to distinguish between the two dominant electromagnetic emissions, hiss and chorus, as well as to display the complete spectra. This treatment is applied to the Survey periods, which are a fixed sequence of modes, repeated every hour on the hour in order to have reference data from GEOS analogous to many ground-based observatories. One result of this treatment obtained already is that hiss and chorus normally appear together, although one or the other may be dominating in intensity. The occurrence rate of these emissions in local time is also given.For continuous surveillance the filterbank data are used. There are 16 frequency filters supplying magnetic and electric amplitude at few different frequencies. Using these data, a storm sudden commencement can be followed with good time resolution (1 s), and an interesting correlation has been found in a few cases between the VLF signal amplitude and the cold plasma density (as measured by the active part of the S-300 experiment).  相似文献   
10.
GIOTTO, the probe which is presently developed by the European Space Agency, will encounter comet Halley in March 1986 with a relative velocity of 69 km/s. The fore section of the surface will be submitted to the bombardment of dust grains and neutral molecules in the final phase of the mission, like that of an Earth orbiter during atmospheric re-entry. These particles have a kinetic energy of 24 eV per a.m.u.; they produce secondary ions and electrons which form a plasma cloud around the body and control the electric potential of its surface. This paper is a review of the work which has been performed on the subject by dedicated study groups; the purpose of their action was to gather information and produce new findings which might have an influence on the design of the spacecraft and help in the interpretation of the data collected by the scientific payload.

The effect of impact induced plasma may already be significant at 105 km from the comet nucleus; at a distance of 1000 km the flux of ions and electrons produced by cometary dust and neutrals will possibly exceed that of the ambient plasma by more than three orders of magnitude. It is expected that the spacecraft surface potential will be positive and will reach at least a few tens of volts; coating the leading surface of the spacecraft with a thin layer of gold or silver will help reducing the emission of ions from neutral gas. Computer simulation models are used to predict the structure of the charged particle density distribution in the vicinity of the surface. Effects associated with the wake and differential charging are also discussed. The significance of these results is conditioned by the validity of the models and the largest source of uncertainty seems to be associated with the plasma generated by dust impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号