首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
航空   4篇
航天技术   4篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2004年   1篇
  2002年   1篇
  1994年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The Mercury Magnetopsheric Orbiter (MMO) is one of the spacecraft of the BepiColombo mission; the mission is scheduled for launch in 2014 and plans to revisit Mercury with modern instrumentation. MMO is to elucidate the detailed plasma structure and dynamics around Mercury, one of the least-explored planets in our solar system. The Mercury Plasma Particle Experiment (MPPE) on board MMO is a comprehensive instrument package for plasma, high-energy particle, and energetic neutral particle atom measurements. The Mercury Ion Analyzer (MIA) is one of the plasma instruments of MPPE, and measures the three dimensional velocity distribution of low-energy ions (from 5 eV to 30 keV) by using a top-hat electrostatic analyzer for half a spin period (2 s). By combining both the mechanical and electrical sensitivity controls, MIA has a wide dynamic range of count rates for the proton flux expected around Mercury, which ranges from 106 to 1012 cm−2 s−1 str−1 keV−1, in the solar wind between 0.3 and 0.47 AU from the sun, and in both the hot and cold plasma sheet of Mercury’s magnetosphere. The geometrical factor of MIA is variable, ranging from 1.0 × 10−7 cm2 str keV/keV for large fluxes of solar wind ions to 4.7 × 10−4 cm2 str keV/keV for small fluxes of magnetospheric ions. The entrance grid used for the mechanical sensitivity control of incident ions also work to significantly reduce the contamination of solar UV radiation, whose intensity is about 10 times larger than that around Earth’s orbit.  相似文献   
2.
The early phases of three flares, observed by the Nobeyama Radio Heliograph, are studied. Nonthermal and thermal radio sources are identified by comparison with soft X-ray images taken by the Soft X-ray Telescope onboard the Yohkoh satellite. Two of the flares are mainly of nonthermal origin and their location coincides with one of the footpoints of soft X-ray loops. Another flare has both thermal and nonthermal components which start to brighten simultaneously. This suggests that particle acceleration and plasma compression develop simultaneously.  相似文献   
3.
Recent two-dimensional (2-D) particle-in-cell (PIC) simulations have shown that there is a critical thickness of a current sheet, above which no significant saturation amplitude of the 2-D tearing (TI) mode can be expected. Here, we have introduced the initial electron temperature anisotropy (αe0 = Te⊥/Te|| > 1), which is known to raise significantly the linear growth rates, and inspected if αe0 > 1 can change the saturation level of the TI in a super-critical current sheet. Varying αe0 and D (D: the current sheet half-thickness) systematically, we have found that while αe0 boosts up the linear growth rate in both sub- and super-critical current sheets, macroscopic effects are obtained only in sub-critical current sheets, that is, energy transfer from the fastest growing short wavelength modes to longer wavelength modes are available only in the sub-critical regime. Since the critical thickness is a fraction of the ion inertial length, the tearing mode assisted by the electron temperature anisotropy alone, despite its significant boost in the linear growth rate, cannot be the agent for reconnection triggering in a current sheet of ion-scale thickness.  相似文献   
4.
Reconnection and Waves: A Review with a Perspective   总被引:1,自引:0,他引:1  
This review is intended to help prepare a new stage of wave studies in the context of magnetic reconnection. Various results that have accumulated would not let the two-dimensional, steady and laminar magnetic reconnection to remain as the standard model. Emphasis on three-dimensional, temporally varying, and turbulent effects is growing and this fact tells that the effects of waves in various frequency ranges deserve further attention in the context of magnetic reconnection. In this review, by setting a perspective, selected recent topics are reviewed and the ways in which these can be viewed as the stepping stones towards a new research horizon of magnetic reconnection are discussed.  相似文献   
5.
Human habitation and animal holding experiments in a closed environment, the Closed Ecology Experiment Facilities (CEEF), were carried out. The CEEF were established for collecting experimental data to estimate carbon transfer in the ecosystem around Rokkasho nuclear fuel reprocessing plant. Circulation of O2 and CO2, and supply of food from crops cultivated in the CEEF were conducted for the first time in the habitation experiments. Two humans known as eco-nauts inhabited the CEEF, living and working in the Plant Module (PM) and the Animal and Habitation Module (AHM), for a week three times in 2005. On a fresh weight basis, 82% of their food was supplied from 23 crops including rice and soybean, cultivated and harvested in the PM, in the 2nd and 3rd experiments. For the goats, the animals held in the experiments, all of their feed, consisting of rice straw, soybean plant leaves, and peanut shells and peanut plant leaves, was produced in the PM in the 2nd and 3rd experiments. The O2 produced in the PM by photosynthesis of the crops was separated by the O2 separator using molecular sheaves, then accumulated, transferred, and supplied to the AHM atmosphere. The CO2 produced in the AHM by respiration of the humans and animals was separated by the CO2 separator using solid amine, then accumulated, transferred, and supplied to the PM atmosphere. The amount of O2 consumed in the AHM was 46–51% of that produced in the PM, and the amount of CO2 produced in the AHM was 43–56% of that consumed in the PM. The surplus of O2 and the shortage of CO2 was a result of the fact that waste of the goats and the crops and part of the human waste were not processed in these habitation experiments. The estimated amount of carbon ingested by the eco-nauts was 64–92% of that in the harvested edible part of the crops. The estimated amount of carbon ingested by the goats was 36–53% of that in the harvested inedible part of the crops. One week was not enough time for determination of gas exchange especially for humans and animals, because fluctuation of their gas exchange was quite high. The amount of transpired water collected as condensate was 818–938 L d−1, and it was recycled as replenishing water compensating transpiration loss of nutrient solution. The amount of waste nutrient solution discharged from the PM was 1421–1644 L d−1. The waste nutrient solutions from rice and other crops were processed through micro filters (MFs) separately. The MF filtrated solutions were processed with reverse osmosis (RO) membrane filter separately and divided into filtrated water and concentrated waste nutrient solution. The concentrated waste nutrient solution from the crops other than rice was processed through an ultra-micro filter (UF) and reused, although that from rice was discharged in 2005. Concentrations of nutritional ions in the UF filtrated solution were determined, the depleted ions were added back, the UF filtrated solution was diluted with the RO membrane filtrated water, and the nutrient solution for the crops other than rice was regenerated. The nutrient solution for rice was newly made each time, using concentrated solution from an external source and the RO membrane filtrated water. Average amounts of water used in the AHM (L d−1) were determined as follows: drinking by humans (filtrated water), 1.5; cooking, etc. (filtrated water other than for drinking), 14.3; drinking by goats, 3.8; showering (hot water), 13.2; showering (cold water), 0.1; washing of hand and face and brushing teeth, 4.1; washing of dishes, dish clothes and towels, 36.4; and washing of animal holding tools, 0.3. The waste water was processed by a RO purification system and recycled for toilet flushing and animal pens washing. A circulation experiment for water was started in 2006 and a circulation experiment for waste materials is planned for 2007. In 2006, a single duration of the air circulation experiments was 2 weeks, although the human habitants were changed after 1 week.  相似文献   
6.
Boynton  W.V.  Feldman  W.C.  Mitrofanov  I.G.  Evans  L.G.  Reedy  R.C.  Squyres  S.W.  Starr  R.  Trombka  J.I.  d'Uston  C.  Arnold  J.R.  Englert  P.A.J.  Metzger  A.E.  Wänke  H.  Brückner  J.  Drake  D.M.  Shinohara  C.  Fellows  C.  Hamara  D.K.  Harshman  K.  Kerry  K.  Turner  C.  Ward  M.  Barthe  H.  Fuller  K.R.  Storms  S.A.  Thornton  G.W.  Longmire  J.L.  Litvak  M.L.  Ton'chev  A.K. 《Space Science Reviews》2004,110(1-2):37-83
The Mars Odyssey Gamma-Ray Spectrometer is a suite of three different instruments, a gamma subsystem (GS), a neutron spectrometer, and a high-energy neutron detector, working together to collect data that will permit the mapping of elemental concentrations on the surface of Mars. The instruments are complimentary in that the neutron instruments have greater sensitivity to low amounts of hydrogen, but their signals saturate as the hydrogen content gets high. The hydrogen signal in the GS, on the other hand, does not saturate at high hydrogen contents and is sensitive to small differences in hydrogen content even when hydrogen is very abundant. The hydrogen signal in the neutron instruments and the GS have a different dependence on depth, and thus by combining both data sets we can infer not only the amount of hydrogen, but constrain its distribution with depth. In addition to hydrogen, the GS determines the abundances of several other elements. The instruments, the basis of the technique, and the data processing requirements are described as are some expected applications of the data to scientific problems.  相似文献   
7.
Current sheet instabilities having wavenumber vectors parallel to the current direction are studied as a linear eigenvalue problem in a two-fluid system where electrons are treated as a finite-mass charge neutralizing component. Focusing on ion-scale current sheets, we show that a hybrid scale current sheet kink instability (CSKI) is one of the major instabilities to appear. The hybrid scale CSKI in a magnetotail-like situation has a wavelength much shorter than the well-studied drift-kink instability (DKI). While most of the previous studies have focused on the long-wavelength range, a full-particle simulation with much larger ion-to-electron mass ratio (RM = 400) shows the growth of the hybrid scale CSKI as predicted by linear analyses. We also show that the CSKI has large growth rates in a magnetopause-like situation.  相似文献   
8.
MAP-PACE (MAgnetic field and Plasma experiment—Plasma energy Angle and Composition Experiment) on SELENE (Kaguya) has completed its ~1.5-year observation of low-energy charged particles around the Moon. MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measured the distribution function of low-energy electrons in the energy range 6 eV–9 keV and 9 eV–16 keV, respectively. IMA and IEA measured the distribution function of low-energy ions in the energy ranges 7 eV/q–28 keV/q and 7 eV/q–29 keV/q. All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor has a hemispherical field of view, two electron sensors and two ion sensors installed on the spacecraft panels opposite each other could cover the full 3-dimensional phase space of low-energy electrons and ions. One of the ion sensors IMA is an energy mass spectrometer. IMA measured mass-specific ion energy spectra that have never before been obtained at a 100 km altitude polar orbit around the Moon. The newly observed data show characteristic ion populations around the Moon. Besides the solar wind, MAP-PACE-IMA found four clearly distinguishable ion populations on the dayside of the Moon: (1) Solar wind protons backscattered at the lunar surface, (2) Solar wind protons reflected by magnetic anomalies on the lunar surface, (3) Reflected/backscattered protons picked-up by the solar wind, and (4) Ions originating from the lunar surface/lunar exosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号