首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8620篇
  免费   1769篇
  国内免费   1113篇
航空   7084篇
航天技术   1476篇
综合类   1017篇
航天   1925篇
  2024年   44篇
  2023年   308篇
  2022年   367篇
  2021年   439篇
  2020年   466篇
  2019年   475篇
  2018年   357篇
  2017年   380篇
  2016年   470篇
  2015年   451篇
  2014年   557篇
  2013年   478篇
  2012年   556篇
  2011年   561篇
  2010年   519篇
  2009年   532篇
  2008年   520篇
  2007年   518篇
  2006年   399篇
  2005年   365篇
  2004年   337篇
  2003年   347篇
  2002年   245篇
  2001年   294篇
  2000年   208篇
  1999年   188篇
  1998年   160篇
  1997年   135篇
  1996年   123篇
  1995年   88篇
  1994年   118篇
  1993年   81篇
  1992年   104篇
  1991年   77篇
  1990年   63篇
  1989年   85篇
  1988年   26篇
  1987年   18篇
  1986年   17篇
  1985年   11篇
  1984年   2篇
  1983年   4篇
  1982年   4篇
  1980年   4篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
目标检测与跟踪技术广泛应用于交通、医疗、安保和航天等领域.目前,目标检测与跟踪技术面临目标微弱、背景复杂、目标被遮挡等挑战.同时,随着脑科学研究的不断深入,人们对人脑视觉系统的理解逐渐透彻,利用类脑计算解决复杂背景下高精度目标检测与跟踪问题成为相关领域的重要研究方向.本文结合神经工程导向的类脑模型和计算机工程导向的深度神经网络(Deep Neural Networks, DNNs),提出多种基于类脑模型与深度神经网络的目标检测与跟踪算法,包括:基于演算侧抑制的目标检测算法,基于结构 对比度(Structure Contrast, SC)视觉注意模型的弱小目标检测算法和基于记忆机制与分层卷积特征的目标跟踪算法.实验结果表明,将类脑模型和深度神经网络应用于目标检测和跟踪领域,有利于实现复杂条件下的高精度目标检测和鲁棒性目标跟踪.  相似文献   
72.
燃油喷嘴的增材制造在缩短制造周期、降低制造成本以及提升合格率方面具有明显优势,但是喷嘴内流道表面的光整处理成为打印工艺亟需突破的关键技术难题。对增材制造燃油喷嘴内流道特征件进行磨粒流四因素抛光试验,结果表明在本文的试验条件下,磨粒流抛光可有效去除表面黏粉、球化现象,改善表面台阶效应;通过优化计算获得了磨粒流抛光的最优工艺参数,经试验验证,喷嘴内流道表面粗糙度Ra由9.10μm降至2.70μm。  相似文献   
73.
针对我国涡扇发动机系统和部件适航试验未得到充分融合及系统化贯彻的问题,以系统和部件试验的适航需求为引导,在提出涡扇发动机系统和部件试验的适航符合性验证实现路径的基础上,建立了系统和部件试验验证项目的决断模型和阶段化及并行模型。实例表明,提出的验证实现路径和建立的验证模型,能有效地将系统和部件适航符合性验证项目融合进发动机研制周期中,并系统地实现验证与对象之间的匹配及过程控制,对保证涡扇发动机系统和部件试验适航符合性验证的充分性和系统性具有积极的指导意义。  相似文献   
74.
受多种因素影响,临近空间大气环境要素复杂多变,预报难度很大.本文采用时间序列法中的自回归滑动平均(ARMA)模型对临近空间大气风场开展统计预报方法研究,基于廊坊(39.4°N,116.7°W)中频雷达在88km高度的大气纬向风数据开展预报试验.本次预报试验的样本数据为2015年9月24日至10月24日风场数据,利用过去7天数据对未来第8天风场数据进行预报.试验结果显示,ARMA模型对临近空间大气风场预报有一定的适用性.当风场变化规律性较强,即样本数据风场呈现出比较显著的24h周期性变化时,ARMA模型预报效果较好;当风场发生突变时,预报效果变差.与实测数据的对比结果表明,ARMA模型预报结果的误差在9~27m·s-1,预报效果优于同阶自回归(AR)模型,略优于高阶AR模型.   相似文献   
75.
湍流火焰结构是表征湍流与火焰相互作用的组分、速度、温度等标量场信息,理解湍流与火焰相互作用规律,验证和发展湍流燃烧模型的实验基础。针对传统曲率PDF分布反映湍流火焰面褶皱结构失准问题,利用网络拓扑结构方法可以标记系统关键节点和特征结构,构建湍流火焰面的拓扑结构。本文标记了湍流火焰面上的关键褶皱结构,分析了湍流与火焰的作用规律,结果表明:低湍流强度下,湍流火焰面的关键褶皱结构由火焰自身不稳定性引起;当湍流强度增大,湍流火焰面的关键褶皱结构由湍流尺度决定。在本生灯湍流火焰中,火焰自身不稳定性引起的火焰褶皱与火焰发展距离有关。在本生灯火焰底部,火焰自身不稳定性不引起火焰面褶皱,随着火焰向下游发展,其对火焰面影响逐渐增大,火焰褶皱程度增加。  相似文献   
76.
提出了一种基于迭代抽样和径向基插值的自适应代理模型方法。这种自适应方法以减少仿真计算数量和提高代理模型自适应能力为目的,使用多岛遗传算法选择新增样本点并使新增样本点位于设计空间的稀疏区域,使得所有的样本点均匀分布于设计空间。标准误差用来判断代理模型的精度大小以决定是否对代理模型进行更新。这种自适应代理模型结合多岛遗传算法对直升机的惯性传感器结构模态进行优化。用拉丁超立方抽样方法选择10个样本点构建初始的代理模型,自适应代理模型的计算结果表明2%的误差条件下需要额外增加7个样本点。优化结果表明不同的权重系数对最优模态特性的影响很大,惯性传感器结构的一至六阶模态值更加远离直升机的激励频率。  相似文献   
77.
李宝玉  张磊刚  裘群海  余雄庆 《航空学报》2019,40(5):222629-222629
改进一次二阶矩(AFOSM)法是一种基于功能函数梯度的结构可靠性分析方法,鉴于其对隐式函数的梯度较难求解,提出了一种基于Kriging模型梯度解析解的AFOSM方法,利用Kriging代理模型的解析表达式推导得到功能函数对输入变量的梯度解析解,为AFOSM中设计点的确定提供高精度的梯度信息。通过Kriging与AFOSM的结合,很好地解决了基于有限元模型的隐式情况下梯度计算量相当大、可靠性分析难的问题。数值与工程算例验证了所提Kriging梯度解析解的较高精确性,同时验证了所提基于Kriging解析解的AFOSM结构可靠性分析方法的正确性与较高精度。  相似文献   
78.
基于CFD理论,利用Fluent求解软件,借助超级计算机强大的并行运算能力对航空弧齿锥齿轮副风阻功率损失进行仿真计算。采用局部综合法建立弧齿锥齿轮副三维模型,选用RNG k-ε湍流模型,考虑平均流动中的旋流流动情况,与标准k-ε模型相比,RNG通过修正湍流黏度并很好地处理了高应变率以及流线弯曲程度较大的流动。齿轮边界运动通过UDF(user-defined functions)函数驱动,同时采用动网格模拟流场形状由于边界运动而随时间改变问题。最后得出无挡风罩和不同挡风罩配置下的齿轮副风阻功率损失,证实了合理安装挡风罩能够有效降低齿轮风阻损失,并分析多组仿真实验间的减速器内流场压力、速度、湍流动能云图变化,得出了最优化的挡风罩配置,以求最小化风阻功率损失,文中减阻效果最好的挡风罩能降低55.3%的齿轮风阻损失,此时挡风罩间隙为1 mm,为工程实际应用挡风罩的设计提供了参考。  相似文献   
79.
为研究旋流驻涡燃烧室的燃烧性能,设计了3种旋流器方案(基准型、小流通面积和外加套筒),在进口温度493 K、常压条件下,采用RP-3航空煤油作为燃料,凹腔当量比在0.8~1.8之间,开展了热态试验。结果表明:基准型和小流通面积的主燃区火焰为脱体火焰,而外加套筒则为V型驻定火焰,且小流通面积和加套筒的主燃区火焰更加集中。燃烧效率方面,基准型最低,而小流通面积最高,试验中获得的最高燃烧效率为96.3%。随着凹腔当量比的增加,基准型的燃烧效率不断增加,而小流通面积的则先基本不变,随后略有增加,外加套筒的则先快速增加,然后缓慢增加。此外,小流通面积的冷态总压损失高于基准型,在进口马赫数为0.31时,两者的冷态总压损失分别为7.2%和4.5%。  相似文献   
80.
航空发动机燃烧室内部高温、气动及噪声等复杂载荷环境是导致火焰筒结构产生裂纹的主要因素之一,掌握火焰筒结构表面载荷特性及其与燃烧参数之间的关系,对于其强度评估非常重要。本文依据某型发动机真实构型设计了典型火焰筒试验件,搭建了模拟燃烧试验平台,发展了热电偶/示温漆组合测温和基于波导管的噪声测试方法,获得了不同燃烧状态下火焰筒表面的温度与噪声载荷分布特征,通过对比试验给出了进口温度、流量、供油量等参数对结构载荷的影响规律。结果表明,火焰筒表面噪声总声压级峰值超过150d B,总声压级、频率特性及分布特征与燃烧状态和结构振动特性等因素相关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号