首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4774篇
  免费   553篇
  国内免费   563篇
航空   3801篇
航天技术   370篇
综合类   624篇
航天   1095篇
  2024年   18篇
  2023年   111篇
  2022年   150篇
  2021年   176篇
  2020年   201篇
  2019年   202篇
  2018年   125篇
  2017年   175篇
  2016年   196篇
  2015年   151篇
  2014年   165篇
  2013年   169篇
  2012年   314篇
  2011年   251篇
  2010年   179篇
  2009年   205篇
  2008年   247篇
  2007年   227篇
  2006年   186篇
  2005年   177篇
  2004年   167篇
  2003年   162篇
  2002年   181篇
  2001年   172篇
  2000年   158篇
  1999年   139篇
  1998年   152篇
  1997年   151篇
  1996年   125篇
  1995年   139篇
  1994年   127篇
  1993年   104篇
  1992年   141篇
  1991年   94篇
  1990年   92篇
  1989年   98篇
  1988年   21篇
  1987年   37篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
排序方式: 共有5890条查询结果,搜索用时 31 毫秒
61.
宽裕度超声叶型气动优化设计   总被引:1,自引:0,他引:1  
通过与德国航天局设计的超声预压缩叶型PAV-15试验数据比对,确定高精度超声叶栅流场计算方法,研究表明:根据激波位置分段调整流管厚度可提高计算与试验结果的一致性。为提高超声叶栅稳定工作裕度并保证设计点性能,建立根据目标裕度估算喘点反压方法和优化设计方法。对两个超声叶型进行多目标优化,优化结果表明:优化叶栅可减小设计工况槽道激波入射角、减小激波及激波附面层干扰损失;气动喉道前移、结尾正激波后移,提高叶栅耐反压能力。两个优化叶型在保持总静压比不变的前提下,稳定裕度均达到设计目标,设计点损失也有所下降。  相似文献   
62.
发展了一种利用叶片延迟振动设置叶间相位角的振动时滞法和多通道叶片非同相振动的流固耦合颤振分析模型。模型通道数选取相邻节径线之间通道数的两倍,在循环扇区的不同通道中,令叶片的各阶振动模态位移滞后于前一叶片,结合基于虚拟弹性体的快速动网格算法实现流场及叶片网格的高效更新。针对Rotor 37多通道模型,研究了不同叶间相位角对叶片气弹稳定性及通道流场特性的影响。结果表明:多通道方法与全环叶片颤振分析的计算结果基本一致,而18节径振动下多通道方法的计算时间是全环分析的1486%;节径振动形式对气动阻尼有显著影响,且在2节径时发生气弹失稳;叶间相位角引起流道内激波位置和强度变化和非定常激波脉动异相冲击,是影响颤振的主要原因。  相似文献   
63.
CFM56发动机高压压气机转子平衡工艺分析   总被引:1,自引:0,他引:1       下载免费PDF全文
转子不平衡是航空发动机的主要激振源,直接影响发动机可靠性及部件使用寿命。为降低发动机振动,针对CFM56发动 机高压压气机转子,采用SAE ARP4163 标准评定方法,深入研究初始不平衡量数值设定和多校正面平衡等技术难点。结果表明: CFM56 发动机高压压气机转子初始不平衡量(≤3048 g·mm)、剩余不平衡量(G3.6平衡等级)精度设计合理,基于初始不平衡量控制 的多面平衡工艺方法有效;利用转子定位基准误差识别重要部位和计算分析配重块在各校正面上的影响系数等分析工作,可高效 实现平衡结果最优化。  相似文献   
64.
航空发动机涡轮叶片高周疲劳裂纹 故障分析与思考   总被引:1,自引:0,他引:1  
针对航空发动机涡轮整体叶盘叶片发生的高周疲劳裂纹故障,及排故初期受动应力测试条件限制,主要采取增强结构抗力的排故措施使裂纹位置集中于叶片尾缘根部。后经高温、高转速、小尺寸整体叶盘叶片动应力测试技术攻关,明确故障主要为涡轮导叶尾流激起的叶片振动应力超限所致。采取增加导叶数避开共振的改进措施,并经整机高周疲劳试验考核验证了其有效性。认识到叶片振动特性设计时需关注的几个问题,及先进动应力测试技术在发动机研制过程中的不可或缺,形成了一套经过实践验证的叶片高周疲劳排故工作流程,对国内航空发动机研制起到一定的参考借鉴作用。  相似文献   
65.
汪鹏  王婕 《航空发动机》2020,46(1):86-90
针对某航空高强钢零件大尺寸面轮廓度数控加工合格率较低问题,利用精益6σ方法,依据DMAIC的研究路径,充分运用箱线图、等方差检验、单因子方差分析等方法和工具,分析了“人、机、料、法、环、测”6大方面的操作者、加工刀具、装夹方式、主轴转速、切削量、进给速度、切削方式7个因素,确定刀具尺寸、切削量、进给速度为关键影响因素;通过建立面轮廓度与7个影响因素之间的GLM模型,得出影响流程输出的3个关键影响因素的最佳组合,并在此基础上对工艺参数进行优化。结果表明:该零件的数控加工工艺流程改进后,减少了加工过程中的人工调试检查环节,缩短了加工调试验证时间,大尺寸面轮廓度数控加工合格率从80%提高到96%以上,取得了较好的经济效益。  相似文献   
66.
为深入研究分级旋流火焰特性,以分级旋流模型燃烧室为研究对象,对四个不同燃料分级比(Rf)条件下的分级旋流火焰进行了数值研究,在时均燃烧场特性分析的基础上进一步对燃料分级比为1和3两个工况进行了基于壁面建模的大涡模拟(WMLES)研究。结果表明:燃料分级比的改变会影响中心回流区(CRZ)的长度和宽度。燃烧室中截面的散点分布图能够显示出不同燃料分级比条件下的燃烧特征。燃料分级比为1时,燃烧室剪切层仅存在零散的涡破碎区;而燃料分级比为3时,伴随涡破碎区还出现了单螺旋分支进动涡核(PVC)。通过FFT变换获得的燃烧室内剪切层速度能谱主频与进动涡核的旋转频率相同,表明内剪切层速度脉动的产生与进动涡核有关。另外进动涡核会使流场内的燃料分布和燃烧模式发生周期性的变化,进而影响燃烧过程。调整燃料分级比在1附近,能够使分级火焰达到稳定燃烧降低排放的目标。  相似文献   
67.
为准确获取离心叶轮叶片的高阶振动特性及其模态,利用压电纤维复合材料(Marco fiber composite,MFC)对离心叶轮叶片进行模态测试。设计了MFC激励系统,提出了MFC选型、激励和测点位置的确定方法,研究了不同信号的高阶模态激励效果,并分析了MFC附加质量和刚度对叶片固有频率和模态的影响;结合有限元仿真结果,对比分析了前20阶振动模态的异同。试验结果表明:MFC具有操作简单、重复性好、信噪比高、能够稳定激励出高阶模态等优势,计算模态与测量模态吻合较好,在第6~8阶与第12~15阶之间存在模态密集区域;MFC附加质量和刚度对实验固有频率的影响低于4%。提出的MFC激励方法可用于具有较高固有频率的航空发动机部件的模态测量。  相似文献   
68.
以CFRP钻削加工过程的切削热和切削温度为研究对象,从其形成机理、产生的影响以及影响切削热的因素和控制切削热的方法四个方面进行了系统综述,对存在的问题进行了综合分析,并对今后研究方向进行了展望。  相似文献   
69.
韩景龙  陈全龙  员海玮 《航空学报》2015,36(4):1034-1055
直升机的气动弹性问题与固定翼飞机不同,不仅要考虑单片桨叶,更要将旋翼视为一个整体,考虑其动态入流、尾迹影响以及旋翼与机身之间的相互耦合等。就单片桨叶而言,在结构动力学上,需要考虑离心力场、几何非线性以及桨叶的非线性挥舞-摆振-扭转耦合;在气动力上,需要考虑动态入流以及桨尖处可能的失速效应,本质上属于非线性气动弹性力学范畴。由于旋翼气动力通常是以周期形式通过旋翼轴传给机身,并引起机身振动,而机身运动又通过改变桨叶根部形态反过来影响旋翼的气动弹性特性,这种旋翼/机身耦合问题,也是近年来直升机气动弹性问题研究中的重要方向和热点之一。此外,随着旋翼流场数值分析方法的日趋成熟,采用动态重叠网格或滑移网格方法来实现桨叶运动,并通过动网格技术来实现桨叶的弹性变形,从而实现弹性旋翼流场的数值模拟,目前正呈现出勃勃生机,成为直升机气动弹性研究的又一重要方向和热点。随着各种新构型直升机的相继出现,如倾转旋翼机、前行桨叶概念旋翼(ABC)直升机和复合式直升机等,也带来了新的气动弹性问题。不断发现问题、解决问题,推动本学科持续发展,永远是气动弹性工作者终身奋斗的目标。  相似文献   
70.
结构特征参数对发动机支点同心度的影响研究   总被引:1,自引:0,他引:1  
航空发动机静子支点作为转子的支撑部位,由于制造工艺、装配误差和长时间工作的影响,较易出现支点不同心的现象。基于形状和位置公差理论,建立了一种发动机支点同心度的计算模型,并对某发动机的支点同心度分布进行了仿真计算。通过分析影响支点同心度的关键结构参数和测量支点同心度试验,提出了同心度的控制方法。结果表明:采用本文所述理论计算和控制方法,可准确地判断出发动机支点同心度是否符合标准,以便有针对性地选择调整措施,进而提高了发动机的装配质量,有效避免转、静子不同轴引起的碰摩问题,减小了发动机整机振动出现的几率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号