首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1914篇
  免费   455篇
  国内免费   202篇
航空   1488篇
航天技术   382篇
综合类   223篇
航天   478篇
  2024年   5篇
  2023年   61篇
  2022年   77篇
  2021年   88篇
  2020年   112篇
  2019年   104篇
  2018年   64篇
  2017年   87篇
  2016年   90篇
  2015年   87篇
  2014年   98篇
  2013年   62篇
  2012年   119篇
  2011年   120篇
  2010年   91篇
  2009年   101篇
  2008年   97篇
  2007年   113篇
  2006年   87篇
  2005年   76篇
  2004年   72篇
  2003年   78篇
  2002年   45篇
  2001年   60篇
  2000年   47篇
  1999年   49篇
  1998年   39篇
  1997年   46篇
  1996年   60篇
  1995年   55篇
  1994年   40篇
  1993年   37篇
  1992年   43篇
  1991年   26篇
  1990年   39篇
  1989年   39篇
  1988年   21篇
  1987年   12篇
  1986年   10篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
排序方式: 共有2571条查询结果,搜索用时 15 毫秒
11.
为改善金属橡胶板的过滤能力,将多孔金属橡胶板与介电泳力相结合,并利用液态金属在受限空间内的高效泵送功能,研究了金属橡胶板对5 μm聚苯乙烯微球的过滤性能。实验中,将一对金属橡胶板平行嵌入至闭环微流体循环通道内,以实现介电泳力的交流电场梯度。结果表明:由于金属橡胶板内部孔径远大于聚苯乙烯微球直径,在未施加交流电信号的情况下,较难实现过滤功能;而对两个金属橡胶板适当通电,则电解液中的聚苯乙烯微球将被短距离的介电泳力收集于金属橡胶板周围,明显提高过滤效率。  相似文献   
12.
龚东升  顾蕴松  周宇航  史楠星 《航空学报》2020,41(10):123609-123609
流体推力矢量喷管型面固定、活动部件少、结构重量轻,能够为高机动飞行器提供有效的飞行控制手段,但无源流体推力矢量喷管热喷流的偏转控制规律尚未完全掌握。为了推进无源流体推力矢量技术的实用化,本文设计研制了适用于微型涡喷发动机的耐高温喷管模型,对该喷管在微型涡喷发动机热喷流状态下的控制规律进行研究。利用非接触光学显示和测量手段——红外热成像拍摄和粒子图像测速(PIV)技术对主射流流动特性进行研究,获得流动矢量角随二次流控制阀门闭合度变化的控制规律;利用六分量盒式天平测力实验研究无源流体推力矢量喷管的力学特性,获得推力矢量角随二次流控制阀门闭合度变化的控制规律。研究结果表明:该构型喷管在微型涡喷发动机热喷流下主射流连续可控偏转,最大流动矢量角为-12.3°/12.3°,最大推力矢量角为-12.9°/12.8°,控制规律接近线性,不存在主射流偏转突跳问题。  相似文献   
13.
以钇稳定二氧化锆(YSZ)火焰传感器为研究对象,利用马弗炉,在873~1 523 K的温度范围内,测量了YSZ火焰传感器对温度的静态响应,获得并分析了传感器的静态校准曲线与静态响应特性。结果表明,YSZ火焰传感器的线性度为12.88%,24 V激励电压下的平均灵敏度为10.02 mV/K,迟滞与重复性指标分别为2.13%和2.22%,传感器间的互换度为1.22%。采用Boltzmann函数能够较为准确地拟合YSZ火焰传感器的静态校准曲线,误差小于±3.5%。YSZ火焰传感器的非线性特征明显,精密度与互换性良好,灵敏度较高,总体性能良好。相较于火焰检测中常用的热电偶和离子火焰传感器,YSZ火焰传感器对火焰温度的响应信号更为稳健,能够有效提高火焰检测的准确度与可靠性。   相似文献   
14.
以自然层流翼型RAE5243模型为研究对象,在0.6m跨超声速风洞进行温敏漆(Temperature Sensitive Paint,TSP)转捩测量技术研究,在Ma0.73和Ma0.75条件下开展了模型基本外形和鼓包外形的转捩测量试验。针对缺乏定量分析手段的问题,提出基于温度梯度的转捩位置自动判定算法,包括图像预处理、转捩点定位与筛选和转捩位置计算3个步骤。模型温度分布及转捩测量结果表明:重复性试验结果偏差较小,验证了转捩测量结果的可靠性;相同马赫数条件下,鼓包外形转捩位置相对基本外形向后缘移动;相同外形条件下,Ma0.75的转捩位置相对Ma0.73向后缘移动。TSP试验结果与CFD计算结果吻合较好,变化趋势一致,检验了数值模拟方法的有效性。  相似文献   
15.
针对YKS规格的高压高速电机单机容量高、局部温升大等特点,以1台YKS5602 3 000 kW规格的高压高速电机为例,依据电机实际尺寸,建立了电机端部绕组及定转子模型。采用有限元法对流体场与温度场进行了仿真,计算出电机运行时各个通风槽内冷却气体流动情况,并对电机整体进行流固耦合分析,得到高压电机端部绕组及定转子温度场分布。对仿真计算结果分析,并与样机试验数据比较,结果表明:流体场和温度场耦合的方法能够准确地了解YKS电机各个通风槽内的气体流动情况及电机内局部温升分布。  相似文献   
16.
针对PBT推进剂玻璃化温度高、低温性能不足,难以满足战术发动机宽温使用要求的问题,从粘合剂网络结构与增塑剂两方面,研究了PBT结构单元比例、PBT相对分子质量和固化剂种类对PBT弹性体玻璃化转变的影响,以及多种增塑剂对PBT的增塑效率。结果表明,降低PBT中BAMO链节含量、提高PBT相对分子质量,可显著降低PBT弹性体玻璃化温度。在常用的3种固化剂TDI、IPDI和HDI中,对网络中软段运动能力限制作用强弱为HDIIPDITDI。在研究的含能增塑剂中,Bu-NENA对PBT增塑效率最高,降低玻璃化温度效果远优于常用的增塑剂BDNPF/A。  相似文献   
17.
朱昭君  强洪夫 《推进技术》2019,40(4):721-731
固体火箭发动机喉衬用轴编C/C复合材料的工作环境面临高温、高压、高速燃气流和大量凝聚相颗粒的烧蚀和冲刷,对材料的抗烧蚀性能和热结构特性要求十分严格。因此,从烧蚀实验和热结构特性实验研究、热结构特性预测与气体-颗粒两相流数值模拟三个方面,论述了轴编C/C复合材料的烧蚀及热结构特性研究进展。总结讨论了实现真实烧蚀工作环境的模拟和影响烧蚀实验参数的控制是高温烧蚀实验的难点,对于铝颗粒添加下工况的烧蚀实验和在细观尺度下热结构特性参数的测定实验是重点;提出从实验件类型、实验系统设计和对比有无铝颗粒添加下的工况进行烧蚀实验;提出采用一种热稳定性材料取代界面的实验方案进行热结构特性参数的测定实验。在热结构特性研究的细观尺度方面,组分材料之间的界面对热结构特性的影响有待深入研究,提出在代表性体积单元模型的基础上引入温度的周期性边界条件来实现热结构参数的预测。在气粒两相流数值模拟方面,发动机内不同相之间相互耦合作用以及对轴编C/C复合材料的机械侵蚀是数值模拟研究的难点,提出使用SDPH-FVM耦合的方法去解决内流场燃烧流动的问题,进一步可用来揭示内流场燃烧流动机理。  相似文献   
18.
为研究航空发动机机匣在高温下的包容性能力,通过实验和数值模拟研究25℃和600℃下GH4169合金薄板受球型子弹冲击后的变形行为。弹道冲击实验通过轻气炮实施,子弹以不同初始速率冲击靶板。分析温度和冲击速率对靶板的变形、临界击穿速率、破坏变形模式以及能量吸收的影响。结果表明:高温下靶板的变形更大,靶板被击穿所吸收的能量更小,临界击穿速率更小;高温下靶板被穿透后由弯曲作用引起的花瓣状变形更明显。数值模拟研究通过有限元软件LS-DYNA实施,数值模拟中选用Johnson-Cook本构模型。采用高温分离式霍普金森压杆(SHPB)实验技术对GH4169高温合金进行测试,获得了材料在高温高应变率下的力学特性并拟合了Johnson-Cook本构模型参数。数值模拟研究的结果和实验结果进行了对比,显示了良好的一致性。  相似文献   
19.
针对温度场测量中使用常规温度传感器引线不方便的缺点,设计了一套无引线温度测量模块。该模块具有测量精度高、无需引线、使用方便的特点。测量模块配接热电阻传感器,利用参考电阻比例测量技术,大大提高了测量稳定性。测量模块采用真空隔热蓄热技术,在-65~200℃温度范围内正常工作不少于2 h,可满足该温区真空试验罐、热压罐,或其他密闭试验装置、大空间实验装置等温度场均匀性测量的需求。  相似文献   
20.
<正>在行车时出现水温表读数升高且快到红线位置并出现水温表红色警示标志,或是发动机盖突然冒出白色的水蒸气的情况,就说明水温过高。应当及时将车开到路边停车检查几项内容:第一、要看水箱的水是否充足或是漏水。第二、要检查电子扇是否正常转动。第三、温度传感器是否损坏。第四、冷凝器管是否堵塞等等。同时切不可盲目行车,水箱温度过高会加快活塞的磨损,造成温度变化不均匀,会影响到车子的动力,严重的甚至有可能造成发动机永久损害。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号