首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   10篇
  国内免费   7篇
航空   16篇
航天技术   177篇
综合类   1篇
航天   6篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   9篇
  2019年   11篇
  2018年   12篇
  2015年   5篇
  2014年   23篇
  2013年   18篇
  2012年   13篇
  2011年   8篇
  2010年   15篇
  2009年   19篇
  2008年   17篇
  2007年   1篇
  2006年   5篇
  2005年   5篇
  2003年   8篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
排序方式: 共有200条查询结果,搜索用时 937 毫秒
41.
In this paper we consider an idea of the troposphere tide influence on the character of the longitudinal variations in the distribution of the equatorial plasma bubbles (EPBs) observed in the topside ionosphere. For this purpose, the obtained EPB longitudinal patterns were compared with the thermosphere and ionosphere characteristics having the prominent “wave-like” longitudinal structures with wave number 4, which are uniquely associated with the influence of the troposphere DE3 tides. The characteristics of the equatorial mass density anomaly (EMA), equatorial ionization anomaly (EIA), zonal wind and pre-reversal E?×?B drift enhancement (PRE) were used for comparison. The equinox seasons during high solar activity were under consideration. It was obtained that the longitudinal patterns of the EMA and zonal wind show the surprising similarity with the EPB distributions (R???0.8, R???0.72). On the other hand, the resemblance with the ionosphere characteristics (EIA, PRE) is rather faint (R???0.37, R???0.12). It was shown that the thermosphere zonal winds are the most possible transfer mediator of the troposphere DE3 tide influence. The most successful moment for the transfer of the troposphere DE3 tide energy takes place in the beginning of the EPB production, namely, during the seed perturbation development.  相似文献   
42.
Presently, the ionosphere effect is the main source of the error in the Global Positioning System (GPS) observations. This effect can largely be removed by using the two-frequency measurements, while to obtain the reasonable results in the single-frequency applications, an accurate ionosphere model is required. Since the global ionosphere models do not meet our needs everywhere, the local ionosphere models are developed. In this paper, a rapid local ionosphere model over Iran is presented. For this purpose, the GPS observations obtained from 40 GPS stations of the Iranian Permanent GPS Network (IPGN) and 16 other GPS stations around Iran have been used. The observations have been selected under 2014 solar maximum, from the days 058, 107, 188 and 271 of the year 2014 with different geomagnetic activities. Moreover, ionospheric observables based on the precise point positioning (PPP) have been applied to model the ionosphere. To represent our ionosphere model, the B-spline basis functions have been employed and the variance component estimation (VCE) method has been used to regularize the problem.To show the efficiency our PPP-derived local ionosphere model with respect to the International GNSS Service (IGS) global models, these models are applied on the single point positioning using single-frequency observations and their results are compared with the precise coordinates obtained from the double-differenced solution using dual-frequency observations. The results show that the 95th percentile of horizontal and vertical positioning errors of the single-frequency point positioning are about 3.1 and 13.6?m, respectively, when any ionosphere model are not applied. These values significantly improve when the ionosphere models are applied in the solutions. Applying CODE’s Rapid Global ionosphere map (CORG), improvements of 59% and 81% in horizontal and vertical components are observed. These values for the IGS Global ionosphere map (IGSG) are 70% and 82%, respectively. The best results are obtained from our local ionosphere model, where 84% and 87% improvements in horizontal and vertical components are observed. These results confirm the efficiency of our local ionosphere model over Iran with respect to the global models. As a by-product, the Differential Code Biases (DCBs) of the receivers are also estimated. In this line, we found that the intra-day variations of the receiver DCBs could be significant. Therefore, these variations must be taken into account for the precise ionosphere modeling.  相似文献   
43.
电离层对普通GPS和位置差分GPS定位误差的影响   总被引:2,自引:0,他引:2  
在没有选择可用性条件下,差分GPS定位精度完全取决于电离层的空间不相关性,为了改进差分GPS的校正算法,本文在月平均电离层时延等值图的基础上,建立了一个简单而又逼真的电离层模型,并分析了普通GPS和位置差分GPS仅电离层单一因素引入的定位误差。  相似文献   
44.
本文根据冬季中低纬低电离层中、低频(LF)电波振幅扰动与高纬平流层中大气行昨波活动密切相关的观测事实,分析研究了可能引起低电离层对LF电波吸收变化诸因素的作用后,提出了一种能较好地解释观测现象的物理机制,大气行星波可通过两种方式改变大气离化率q,因而引起低电离层中电子密度N扰动,进而改变由N大小决定的电离层电波吸收值,结果导致LF电波振幅发生相应变化。文中给出了描述这一物理计算公式和某些计算结果。  相似文献   
45.
The electron density profiles in the bottomside F2-layer ionosphere are described by the thickness parameter B0 and the shape parameter B1 in the International Reference Ionosphere (IRI) model. We collected the ionospheric electron density (Ne) profiles from the FORMOSAT-3/COSMIC (F3/C) radio occultation measurements from DoY (day number of year) 194, 2006 to DoY 293, 2008 to investigate the daytime behaviors of IRI-B parameters (B0 and B1) in the equatorial regions. Our fittings confirm that the IRI bottomside profile function can well describe the averaged profiles in the bottomside ionosphere. Analysis of the equatorial electron density profile datasets provides unprecedented detail of the behaviors of B0 and B1 parameters in equatorial regions at low solar activity. The longitudinal averaged B1 has values comparable with IRI-2007 while it shows little seasonal variation. In contrast, the observed B0 presents semiannual variation with maxima in solstice months and minima in equinox months, which is not reproduced by IRI-2007. Moreover, there are complicated longitudinal variations of B0 with patterns varying with seasons. Peaks are distinct in the wave-like longitudinal structure of B0 in equinox months. An outstanding feature is that a stable peak appears around 100°E in four seasons. The significant longitudinal variation of B0 provides challenges for further improving the presentations of the bottomside ionosphere in IRI.  相似文献   
46.
We investigated the diurnal, seasonal and latitudinal variations of ion density Ni over the Indian low and equatorial topside ionosphere within 17.5°S to 17.5°N magnetic latitudes by combining the data from SROSS C2 and ROCSAT 1 for the 9 year period from 1995 to 2003 during solar cycle 23. The diurnal maximum density is found in the local noon or in the afternoon hours and the minimum occurs in the pre sunrise hours. The density is higher during the equinoxes as compared to that in the June and December solstice. The local time spread of the daytime maximum ion density increases with increase in solar activity. A north south asymmetry with higher ion density over northern hemisphere in the June solstice and over southern hemisphere in December solstice has been observed in moderate and high solar activity years. The crest to crest distance increases with increase in solar flux. Ion density bears a nonlinear relationship with F10.7 cm solar flux and EUV flux in general. The density increases linearly with solar flux up to ∼150 sfu (1 sfu = 10−22Wm−2Hz−1) and EUV flux up to ∼50 units (109 photons cm−2 s−1). But beyond this the density saturates. Inverse saturation and linear relationship have been observed in some season or latitude also. Inter-comparison of the three solar activity indices F10.7 cm flux, EUV flux and F10.7P (= (F10.7 + F10.7A)/2, where F10.7A is the 81 day running average value of F10.7) shows that the ion density correlates better with F10.7P and F10.7 cm fluxes. The annual average daytime total ion density from 1995 to 2003 follows a hysteresis loop as the solar cycle reverses. The ion density at 500 km over the Indian longitude sector as obtained by the international reference ionosphere is in general lower than the measured densities during moderate and high solar activity years. In low solar activity years the model densities are equal or higher than measured densities. The IRI EIA peaks are symmetric (±10°) in equinox while densities are higher at 10°N in June solstice and at 10°S in the December solstice. The model density follows F10.7 linearly up to about F10.7 > ∼150 sfu and then saturates.  相似文献   
47.
Nighttime medium-scale traveling ionospheric disturbances (MSTIDs), which have tilted frontal structures in the midlatitude ionosphere, are investigated by the midlatitude ionosphere electrodynamics coupling (MIECO) model in this study. It has been proposed that the electrodynamic coupling between the E and F regions plays an important role in generating MSTIDs within a few hours. An intriguing aspect of MSTIDs is that they were simultaneously observed at magnetic conjugate locations in the Northern and Southern Hemispheres. In order to study the hemisphere-coupled electrodynamics, the MIECO model has been upgraded to consist of two simulation domains for both hemispheres in which the electrostatic potential is solved by considering electrodynamics in both hemispheres. The simultaneous occurrence of MSTIDs at the magnetic conjugate stations has clearly been reproduced when the F-region neutral wind satisfies the unstable condition in both hemispheres and a sporadic-E layer is given only at the Northern (summer) Hemisphere. Even if the unstable condition is satisfied in the summer hemisphere, an unfavorable F-region neutral wind in the winter hemisphere largely suppresses the growth of MSTIDs in both hemispheres.  相似文献   
48.
In order to detect and study the ionospheric response to solar flares (transient high energy solar radiation), we have constructed a radio receiver station at Mexico City, which is part of the “Latin American Very low frequency Network” (LAVNet-Mex). This station extends to the northern hemisphere the so called “South American VLF Network”.  相似文献   
49.
The D-region ionospheric disturbances due to the tropical cyclone Fani over the Indian Ocean have been analysed using Very Low Frequency (VLF) radio communication signals from three transmitters (VTX, NWC and JJI) received at two low latitude stations (Kolkata-CUB and Cooch Behar-CHB). The cyclone Fani formed from a depression on 26th April, 2019 over the Bay of Bengal (Northeastern part of the Indian Ocean) and turned into an extremely severe cyclone with maximum 1-min sustained winds of 250 km/h on 2 May, 2019 which made landfall on 3 May, 2019. Out of six propagation paths, five propagation paths, except the JJI-CHB which was far away from the cyclone track, showed strong perturbations beyond 3σ level compared to unperturbed signals. Consistent good correlations of VLF signal perturbations with the wind speed and cyclone pressure have been seen for both the receiving stations. Computations of radio signal perturbations at CUB and CHB using the Long Wave Propagation Capability (LWPC) code revealed a Gaussian perturbation in the D-region ionosphere. Analysis of atmospheric temperature at different layers from the NASA’s TIMED satellite revealed a cooling effect near the tropopause and warming effects near the stratopause and upper mesosphere regions on 3 May, 2019. This study shows that the cyclone Fani perturbed the whole atmosphere, from troposphere to ionosphere and the VLF waves responded to the disturbances in the conductivity profiles of the lower ionosphere.  相似文献   
50.
Zonal and vertical electric fields were estimated at E region heights in the Brazilian sector. Zonal electric fields are obtained from the vertical electric fields based on their relation through the Hall-to-Pedersen ionospheric conductivities ratio. The technique for obtaining the vertical electric field is based on its proportionality to the Doppler velocities of type 2 irregularities as detected by coherent radars. The 50 MHz backscatter coherent (RESCO) radar was used to estimate the Doppler velocities of the type 2 irregularities embedded in the equatorial electrojet. A magnetic field-line integrated conductivity model was developed to provide the conductivities. It considers a multi-species ionosphere and a multi-species neutral atmosphere, and uses the IRI 2007, the MISIS 2000 and the IGRF 10 models as input parameters for ionosphere, neutral atmosphere and Earth’s magnetic field, respectively. The ion-neutral collision frequencies of all the species are combined through the momentum transfer collision frequency equation, and different percentages of electron-neutral collisions were artificially included for studying the implication of such increase in the zonal electric field, which resulted ranging from 0.13 to 0.49 mV/m between the 8 and 18 h (LT), under quiet magnetic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号