首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 124 毫秒
1.
磁暴期间中纬度电离层剖面结构变化的数值模拟   总被引:4,自引:1,他引:4  
利用电离层理论模型模拟了磁暴期间热层大气温度、成分、中性风和电场扰动对电离层电子密度剖面结构,特别是峰值密度和峰值高度变化的影响,结果表明,热层大气温度变化所引起光化反应系数的改变对电离层剖面结构影响不大;热层大气成分特别是N2/O的变化能有效地引起密度剖面变化,N2增加足以使峰值密度产生所观测到的负相暴;由中性风和电场引起等离子体漂移是峰值高度hmF2变化的主要原因,但对电子密度的影响不足以抵消  相似文献   

2.
本文利用东亚地区12个低纬电离层台站的测高仪观测数据,对1978年8月27日发生的一次曲型磁暴期间电离层峰值高度和密度的变化进行了分析。采用滑动平均区分开电离层中不同时间尺度的扰动,分析了影响中低纬度电离层暴的几种扰动形态特征,并对其物理机制进行了讨论。结果表明:伴随磁暴急始的磁层压缩,电离层中表现出峰值密度增加和峰值高度下降;磁暴主相期间热层大气暴环流及其所引起的中性大气成分变化控制着电离层的大  相似文献   

3.
大功率无线电波与低电离层的相互作用   总被引:13,自引:3,他引:13  
地面入射的大功率无线电波能加热电离层等离子体,引起电离层电子温度和密度的扰动,实现电离层的地面人工变态.本文中,着重考虑电波和电离层相互作用过程中的自吸收,构造一个自治的相互作用模型,在一定功率和频率的加热电波作用下,利用该模型计算了白天低电离层电子温度和由温度的变化而引起的电子密度的变化.计算结果表明,在白天低电离层,电波的自吸收在90km以下比较显著,而最大温度变化在70km高度上,大约增加了2倍.在α复合的假设下,电子密度变化幅度随高度的增加而减少,在70km处,大约增加55%、120km处则为4%左右.  相似文献   

4.
针对北京大学空间物理与应用技术研究所研制的两台大气波动监测仪近三年的观测数据,对这一时段内所观测到的重力波和次声波周期尺度扰动的形态特征、谱结构特征及其在时间分布上的统计特征进行了分析. 给出了几例雷暴、地震等事件中观测到的大气扰动,并揭示了这些事件期间观测到的与地面大气扰动周期尺度相类似的电离层扰动. 结果表明,北京大学研制的大气波动监测仪可有效记录到地面的微弱大气扰动,观测数据可用于进行岩石圈-大气层-电离层之间的耦合研究.   相似文献   

5.
VLF电波渗透到卫星高度电离层传播的全波计算   总被引:3,自引:0,他引:3  
考虑斜向地磁场的影响将电离层设为多层水平分层各向异性有耗介质, 利用传播矩阵法求解全波方程, 进而研究分析VLF频段电离层反射系数随电波频率的变化, 电离层中两种特征极化波的折射和极化特性, 两特征波的电磁场水平分量以及坡印廷能流密度随传播高度的变化. 数值计算结果表明, 地—电离层波导中的垂直极化波比平行极化波易渗透进入电离层; 电离层中两种特征极化波可分为左旋和右旋圆极化波, 左旋分支由于D层强吸收作用表现为速衰减模, 而右旋分支表现为可传播模, 在传播过程中电磁波的能量主要存储在磁场中; 电波频率越低, 其在电离层中的传播损耗越小. 由数值模拟结果发现, 卫星监测VLF频段的低频部分及更低频段的水平磁场变化对于发现地震电离层电磁前兆异常可能更为有效.   相似文献   

6.
1984年4月份兰州地区电离层行波扰动的观测结果及初析张秀菊(中国电波传播研究所,新乡,453003)关键词高频返回探测,多普勒频率,电离层行波扰动1984年4月我们利用高频返回探测系统在新乡一西北(反射点在兰州地区)电路上多次测到电离F层的行波扰动...  相似文献   

7.
本文通过5年的电离层吸收观测资料与平流层增温事件对比及吸收资料的谱分析,得出以下几点初步结论:1)极区平流层增温事件的影响可能通过子午环流和行星波传播,经过5—9天后到达中低纬地区,从而引起那里的电离层吸收变化;2)冬季行星波沿子午方向的平均速度大约在10m/s到15m/s之间变化;3)全年均有周期为32天、18天、10天、8天和2天的行星波出现,它对大气湍流系数有明显影响。计算得出行星波扰动引起中层的NO浓度偏离未扰值可高达40%。   相似文献   

8.
根据武昌电离层观象台接收的罗兰-C LF无线电波的传播资料,利用小波分析方法,研究了1985年和1986年冬季的低电离层中的行星波扰动及其垂直传播。结果表明:(1)两个冬季中,在75km和95km高度上,均存在明显的行星波扰动,主要成分是5-10天和10-20天周期的波动,扰动幅度随高度增长,但增长值小于理论增长值;(2)在75km高度上的扰动和95km高度上的扰动,具有十分相似的扰动形态。根据行  相似文献   

9.
位于波多黎各的Arecibo非相干雷达可以获得低电离层电子和离子密度, 利用此非相干雷达数据对中纬度低电离层的运动特征进行研究. 得到了电子密度随时间和高度的变化 情况, 结果显著呈现出周日变化特征, 并分析了电子密度随高度的变化规律. 进一步对数据进行频谱分析, 深入研究低电离层电子密度的周日变化效应. 得到电子密度的高度剖面, 发现从F层底部到E层有明显的等离子体沉降. 低电离层的层结构特征及电子密度变化表明, 在该区域还存在不同程度的等离子体扰动, 由此对低电离层的作用因素 进行分析, 认为大气潮汐或声重波可能对低电离层产生扰动, 即低电离层与大气存在一定程度的耦合作用.   相似文献   

10.
利用Aureol-3卫星在电离层F层高度上(650km左右)对电离层电场扰动与电子密度扰动的观测进行分析处理,在高纬电离层F层高度上可以检测到舒曼共振现象。根据等离子体参数,可以认为,发生在这个高度上的舒曼共振现象与L模式的波传播有关,舒曼共振的基频是与电子密度的大尺度不规则性有关,谐波分量与正向密度梯度相关。  相似文献   

11.
本文用Nimbus7 SAM卫星观测的温度资料,分析了突然增温事例中地面地形不同的四个子午圈剖面内的温度分布及变化过程。结果表明,高山地区、平原和海面上空的行星波加热和低平流层突然增温有很大的差别。地形的影响是明显的。   相似文献   

12.
There are two ways of external forcing of the lower ionosphere, the region below an altitude of about 100 km: (1) From above, which is directly or indirectly of solar origin. (2) From below, which is directly or indirectly of atmospheric origin. The external forcing of solar origin consists of two general factors – solar ionizing radiation variability and space weather. The solar ionization variability consist mainly from the 11-year solar cycle, the 27-day solar rotation and solar flares, strong flares being very important phenomenon in the daytime lower ionosphere due to the enormous increase of the solar X-ray flux resulting in temporal terminating of MF and partly LF and HF radio wave propagation due to heavy absorption of radio waves. Monitoring of the sudden ionospheric disturbances (SIDs – effects of solar flares in the lower ionosphere) served in the past as an important tool of monitoring the solar activity and its impacts on the ionosphere. Space weather effects on the lower ionosphere consist of many different but often inter-related phenomena, which govern the lower ionosphere variability at high latitudes, particularly at night. The most important space weather phenomenon for the lower ionosphere is strong geomagnetic storms, which affect substantially both the high- and mid-latitude lower ionosphere. As for forcing from below, it is caused mainly by waves in the neutral atmosphere, i.e. planetary, tidal, gravity and infrasonic waves. The most important and most studied waves are planetary and gravity waves. Another channel of the troposphere coupling to the lower ionosphere is through lightning-related processes leading to sprites, blue jets etc. and their ionospheric counterparts. These phenomena occur on very short time scales. The external forcing of the lower ionosphere has observationally been studied using predominantly ground-based methods exploiting in various ways the radio wave propagation, and by sporadic rocket soundings. All the above phenomena are briefly mentioned and some of them are treated in more detail.  相似文献   

13.
本文利用NIMBUS-7SAMS资料分析了东经100度子午线上的两个站点(67.5°N和42.5°N)在10mb和0.0827mb高度上从1978年底至1982年间的大气温度,获得几年的平流层冬季增温结果.在1978/1979年和1981年初的冬季,高纬站点几天内出现的平流层增温最大幅度可达65K.对平流层增温的谱分析结果指出,在高纬冬季平流层有很强的16天、32夭、21天周期的行星波。中纬冬季平流层增温幅度较小,约为20K.中纬的中间层高度上整年存在有5天、8天和16天的行星波。分析研究、南、北半球不同纬度的温度随经度的分布,得出高纬冬季平流层、中间层大气温度随经度有明显的变化。波数1和波数2的波有大的幅度(主要是波数1),从高纬到低纬,波幅逐渐减小在冬季的平流层和中间层大气中,波数1和波数2的行星波在短期内可强烈增强,引起平流层冬季增温。   相似文献   

14.
在弱非线性理论基础上,将三维大气中行星波和惯性重力波从原始非弹性近似方程中分离出来,讨论了典型的2天行星波与惯性重力内波的非线性相互作用过程.从共振曲面和参量不稳定增长率来看,行星波倾向于与空间尺度较大的惯性重力波发生相互作用.利用潮汐波的等价重力波假设,讨论了2天行星波与半日潮及9.6h惯性重力波的相互作用,三波相互作用时能量守恒.非线性相互作用使2天波和潮汐波的波幅受到长期调制.   相似文献   

15.
大尺度行星波跨赤道传播的E—P通量诊断   总被引:1,自引:0,他引:1  
利用Nimbus-7卫星温度探测资料,计算了平流层和中间层的风场、位势高度扰动场,进行了行星波E-P通量分析.结果表明,中层大气中的准定常行星波,其定常分量不能跨过赤道上空的零风线,由于其幅度的起伏和相位的变化,激发的瞬变行星波分量不受赤道零风线的限制,可以从冬半球向夏半球传播,也可以从夏半球向冬半球传播.这种跨赤道传播为夏半球行星波的能量来源提供了一种解释.  相似文献   

16.
用全球原始方程半谱模式研究QBO对行星波传播的影响   总被引:1,自引:0,他引:1  
本文建立了一个全球原始方程半谱模式,模拟了赤道上空风场准两年振荡(QBO)及其相应的副热带急流大小对冬季半球行星波向上传播及平流层突然增温的影响。结果表明,波数1的行星波在QBO东风相比西风相更易向上传播,平流层增温更快更强。波数2则相反。QBO对低纬对流层里的行星波上传的影响限制在低纬低平流层,对中高纬影响不大。  相似文献   

17.
易帆  肖佐 《空间科学学报》1994,14(2):125-133
根据弱相互作用理论,本文建立了损耗大气中极性重力波的非线性相互作用方程。这组方程在三个方面推广了前人的工作:考虑了波的空间传播;包含了粘滞产生的衰减;波谱可以是连续的。粘滞衰减率的大小与波的空间尺度以及传播方向有关。Coriolis力的引入使相互作用系数成为复量。根据这组方程,考察了惯性重力波的参量激发。结果表明:在共振条件满足时,主波存在一个阈值,阈值大小与次级波的损耗率成正比。当主波振幅大于这个阈值时,次级波将指数增长。在相互作用过程中,次级波的频率将发生变化,变化的大小与主波能量成正比。   相似文献   

18.
A 10.7 cm solar radio flux F10.7, geomagnetic planetary equivalent amplitude (Ap index), and period variations were considered in this paper to construct a linear model for daily averaged ionospheric total electron content (TEC). The correlation coefficient of the modeled results and International GNSS Service (IGS) observables was approximately 0.97, which implied that the model could accurately reflect the realistic variation characteristics of the daily averaged TEC. The influences of the different factors on TEC and its characteristics at different latitudes were examined with this model. Results show that solar activity, annual and semiannual cycles are the three most important factors that affect daily averaged TEC. Solar activity is the primary determinant of TEC during periods with high solar activity, whereas periodic factors primarily contribute to TEC during periods with minimum solar activity. The extent of the influences of the different factors on TEC exhibits obvious differences at varying latitudes. The magnitude of the semiannual variation becomes less significant with the increase in latitude. Furthermore, a geomagnetic storm causes an increase in TEC at low latitudes and a decrease at high latitudes.  相似文献   

19.
Scale height, H, estimates are calculated from the decrease/increase of ionospheric virtual reflection heights of low-frequency (LF) radio waves at oblique incidence in suitably defined morning intervals around sunrise during winter months. The day-to-day variations of H qualitatively agree with daily mean temperature variations around 90 km from meteor radar measurements. Since mesospheric long-period temperature variations are generally accepted to be the signature of atmospheric planetary waves, this shows that LF reflection height measurements can be used for monitoring the dynamics of the upper middle atmosphere. The long-term variations of monthly mean H estimates have also been analysed. There is no significant trend, which is in agreement with other measurements of mesopause region temperature trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号