首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   67篇
  国内免费   111篇
航空   393篇
航天技术   29篇
综合类   33篇
航天   33篇
  2024年   2篇
  2023年   4篇
  2022年   14篇
  2021年   21篇
  2020年   24篇
  2019年   18篇
  2018年   24篇
  2017年   37篇
  2016年   39篇
  2015年   28篇
  2014年   34篇
  2013年   22篇
  2012年   25篇
  2011年   31篇
  2010年   25篇
  2009年   23篇
  2008年   29篇
  2007年   22篇
  2006年   13篇
  2005年   4篇
  2004年   10篇
  2003年   7篇
  2002年   9篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
排序方式: 共有488条查询结果,搜索用时 15 毫秒
381.
382.
某支线客机总体方案中增升装置的设计与优化   总被引:2,自引:2,他引:0  
针对某支线客机,从工程设计的角度,完成了该客机增升装置的气动优化设计。首先根据飞机的相关参数确定增升装置所要达到的气动目标,设计增升装置在机翼的展向和弦向的类型和布置方式,从而确定增升装置的总体设计方案。在二维增升装置设计中,使用NURBS曲线参数化拟合多段翼型缝道部分的外形,通过数值模拟方法和优化算法对三段翼型的缝道外形和缝道参数进行优化设计,最终确定了三段翼型起飞、着陆构型,提出一种二维三段翼型(前缘缝翼、主翼、后缘襟翼)的参数化优化设计方法。在三维增升装置设计中,根据增升装置在机翼展向和弦向的布置方式,取若干关键截面,按照三段翼型的优化结果生成三维增升装置。对三维增升起飞构型和着陆构型的气动特性分析评估表明,所设计的三维增升装置满足设定的气动目标。  相似文献   
383.
This paper deals with the modelling and simulation of aircraft systems, in particular for power transmission and control. It is intended to review, propose and disseminate best practices for making model-based/simulation-aided engineering more efficient at any phase of the system life cycle. The proposals are aimed at creating value, not only by increasing the performance of the product under study but also by shortening the time to market, capitalizing knowledge, mitigating risks and facilitating concurrent engineering. The needs associated with the engineering activities are firstly identified to define a set of requirements for the models. Then, these requirements are used to drive the considerations leading to model development, focusing in particular on the process, modelled physical effects, modelling level, model architecting and concurrent engineering. The third part deals with the model implementation, giving special consideration to the different types of models, causalities, parameterization, implementation and verification. Each part is illustrated by examples related to safety critical actuators.  相似文献   
384.
为了模拟适配器与弹体分离的真实过程,以某箱式导弹垂直发射过程为背景,开展了对利用数值模拟风洞建立完备且准确的适配器气动数据库的方法的研究。仿真过程中采用批处理技术提高了计算效率。研究表明,以风速为10 m/s时得到的气动参数为基准,所有的气动参数误差均可以控制在1.5%以内,计算效率提高了50倍;通过数值模拟风洞得出的气动数据库,仿真得到的适配器脱离导弹的过程与试验结果一致。  相似文献   
385.
为提高直升机前飞状态下旋翼非定常气动弹性载荷的预估精度,在旋翼气动弹性综合分析方法中引入旋翼CFD模块,建立了一套基于CFD/CSD松耦合分析的计算方法和程序。为高效解决流固耦合方法中由于桨叶挥舞、扭转等弹性变形带来的旋翼贴体网格变形问题,采用基于代数变换方法的网格变形技术,桨叶运动变形量和旋翼气动力信息通过流固交接面传递。旋翼流场分析方法中,主控方程采用耦合S-A湍流模型的Navier-Stokes方程,围绕旋翼流场的网格采用结构嵌套网格方法生成,无黏通量计算采用Roe格式,时间推进采用双时间法。旋翼结构分析中,考虑旋翼配平,基于Hamilton变分原理和20自由度Timoshenko梁模型求解弹性旋翼非线性运动方程。分别对CSD和CFD方法进行验证,在此基础上,计算了SA349/2旋翼桨叶在前飞状态下的非定常气动力、挥舞弯矩、摆振弯矩和扭转力矩,并与飞行测试数据进行了对比。计算表明:CFD/CSD耦合方法可以显著提高旋翼非定常气动弹性载荷的分析精度,精确捕捉桨叶表面压强峰值、激波位置等,表明本文发展的旋翼CFD/CSD耦合方法可以有效地运用到旋翼气动弹性载荷的预测分析中。  相似文献   
386.
In order to accurately predict the heat and mass transfer behaviors and analyze key factors affecting pressurization process in the hydrogen tank, a comprehensive 2 D axial symmetry Volume-Of-Fluid(VOF) model is established by Computational Fluid Dynamics(CFD) method.The effects of phase change, turbulence and mass diffusion are included in the model and relationships between physical properties and temperature are also comprehensively considered. The phase change model is based on Hertz-Knudsen equation and the mass transfer time relaxation factor is determined by the NASA's experimental data. The mass diffusion model is included in gaseous helium pressurizing. The key factors including the inlet temperature, inlet mass flow rate, injector types and pressurizing gas kinds are quantitatively analyzed. Compared with the experiment, the simulation results show that the deviation of pressurizing gas mass consumption, condensing mass and ullage temperature are 3.0%, 7.5% and 4.0% respectively. The temperature stratification is existed along the axial direction in the surface liquid region and the ullage region, and the bulk liquid is in subcooled state during pressurizing. The location of phase change mainly appears near the vapor–liquid interface, and the mass transfer expressing as condensation or vaporization is mainly determined by the heat convection and molecular concentration near the vapor–liquid interface.The key factors show that increasing the inlet temperature and inlet mass flow rate could shorten the pressurizing time interval and save the pressurizing gas mass. The proportion of the total energy addition of the tank absorbed by the ullage region, the liquid region and the tank wall respectively is greatly influenced by the injector types and more heat transferred into the ullage would result in a faster pressure rising rate. Gaseous hydrogen pressurization has a higher efficiency than gaseous helium pressurization. The simulation results presented in this paper can be used as a reference for design optimization of the pressurization systems of cryogenic liquid launch vehicles so as to save the mass of pressurizing gases and shorten the pressurizing time interval.  相似文献   
387.
《中国航空学报》2020,33(7):1837-1849
Ballistic parameter plays a major role in determining the re-entry trajectory. Lower ballistic coefficient offers an optimal re-entry, wherein the vehicle decelerates higher up in the atmosphere thereby decreasing the imposed aerothermal loads. The current computational study proposes an add-on, to the existing Orion-based re-entry vehicle: a duct circumventing the capsule from the shoulder to the base, to improve the aerocapture ability of the re-entry vehicle. The design cases are categorised based on a non-dimensional parameter termed the Annular Area Ratio (AAR). Dragand ballistic coefficient of the Ducted Re-entry Vehicles (DRVs) at various Mach numbers are evaluated and compared with those of the baseline model. The results show that the proposed design increases the drag for all the AARs considered in the subsonic regime. In the supersonic regime, ducted models of higher AAR are more promising with the increase in Mach number. DRVs also exhibit lower ballistic coefficients than their baseline counterparts.  相似文献   
388.
CFD软件为基础,建立了适用于共轴刚性(双)旋翼直升机着舰飞行时的气动计算模型.应用这一模型,首先计算了Robin旋翼的悬停状态算例,计算结果与试验数据进行了对比.然后着重分析了共轴刚性旋翼直升机在着舰与着陆时的流场异同,并进一步分析了着舰飞行时不同风向角对直升机俯仰、滚转和偏航力矩的影响,获得了一些对直升机着舰飞行有指导意义的结果.  相似文献   
389.
《中国航空学报》2020,33(7):1919-1928
To determine the oxygen concentration variation in ullage that results from dissolved oxygen evolution in an inert aircraft fuel tank, the CFD method with a mass transfer source is applied in the present study. An experimental system is also designed to evaluate the accuracy of the CFD simulations. The dissolved oxygen evolution is simulated under different conditions of fuel load and initial oxygen concentration in ullage of an inert fuel tank with stimulations of heating and pressure decrease. The increase in the oxygen concentration in ullage ranges from 0.82% to 5.92% upon stimulation of heating and from 0.735% to 12.36% upon stimulation of a pressure decrease for an inert ullage in the simulations. The heating accelerates the release of the dissolved oxygen from the fuel by increasing the mass transfer rate in the mass transfer source and decreasing the pressure, thereby accelerating the dissolved oxygen evolution by increasing the concentration difference between the gas and the fuel. The time constant that represents the oxygen evolution rate is independent of the initial oxygen concentration in ullage of an inert tank but depends closely on the fuel load, temperature and pressure. The time constant can be fitted using a polynomial equation relating the fuel load to temperature in the heating stimulation with an accuracy of 4.77%. Upon stimulation of a pressure decrease, the time constant can be expressed in terms of the fuel load and the pressure, with an accuracy of 5.02%.  相似文献   
390.
《中国航空学报》2020,33(3):1107-1118
Electro-hydraulic servo-valves are widely used components in the mechanical industry, aerospace and aerodynamic devices which precisely control the airplane or missile wings. Due to the small size and complex structure in the pilot stage of deflection flapper servo-valves, accurate mathematical models for the flow and pressure characteristics have always been very difficult to be built. In this paper, mathematical models for the pilot stage of deflection flapper servo-valve are investigated to overcome some gaps between the theoretical formulation and overall performance of the valve by considering different flow states. Here, a mathematical model of the velocity distribution at the flapper groove exit is established by using Schlichting velocity equations for in-compressible laminar fluid flow. Moreover, when the flow becomes turbulent, a mathematical model of pressure characteristics in the receiving ports is built on the basis of the assumption of the collision between the liquid and the jet as the impact of the jet on a moving block of fluid particles. To verify the analytical models for both laminar and turbulent flows, the pressure characteristics of the deflection flapper pilot stage are calculated and tested by using numerical simulation and experiment. Experimental verification of the theory is also presented. The computed numerical and analytical results show a good agreement with experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号