首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   4篇
航空   4篇
航天技术   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Electromechanical actuators (EMAs) are becoming increasingly attractive in the field of more electric aircraft because of their outstanding benefits, which include reduced fuel burn and maintenance cost, enhanced system flexibility, and improved management of fault detection and isolation. However, electromechanical actuation raises specific issues when being used for safety-critical aerospace applications like flight controls: huge reflected inertia to load, jamming-type failure, and increase of backlash with service due to wear and local dissipation of heat losses for thermal balance. This study proposes an incremental approach for virtual prototyping of EMAs. It is driven by a model-based system engineering process in order to enable simulation-aided design. Best practices supported by Bond graph formalism are suggested to develop a model’s structure efficiently and to make the model ready for use (or extension) by addressing the above mentioned issues. Physical effects are progressively introduced, and the realism of lumped-parameter models is increased step-by-step. In particular, multi-level component models are architected to ensure continuity between engineering activities. The models are implemented in the AMESim simulation environment, and simulation responses are given to illustrate how they can be used for preliminary sizing, control design, thermal balance verification, and faults to failure analysis. The proposed best practices intend to provide engineers with fast, reusable, and efficient means to assess performance virtually and enhance maturity, performance, and robustness.  相似文献   
2.
The huge and rapid progress in electric drives offers new opportunities to improve the performances of aircraft at all levels:fuel burn,environmental footprint,safety,integration and production,serviceability,and maintainability.Actuation for safety-critical applications like flight-controls,landing gears,and even engines is one of the major consumers of non-propulsive power.Conventional actuation with centralized hydraulic power generation and distribution and control of power by throttling has been well established for decades,but offers a limited potential of evolution.In this context,electric drives become more and more attractive to remove the natural drawbacks of conventional actuation and to offer new opportunities for improving performance.This paper takes the stock,at both the signal and power levels,of the evolution of actuation for safety-critical applications in aerospace.It focuses on the recent advances and the remaining chal lenges to be taken toward full electrical actuation for commercial and military aircraft,helicopters,and launchers.It logically starts by emphasizing the specificity of safety-critical actuation for aero space.The following section addresses in details the evolution of aerospace actuation from mechanically-signaled and hydraulically-supplied to all electric,with special emphasis on research and development programs and on solutions entered into service.Finally,the last section reviews the challenges to be taken to generalize the use of all-electric actuators for future aircraft programs.  相似文献   
3.
This paper deals with the modelling and simulation of aircraft systems, in particular for power transmission and control. It is intended to review, propose and disseminate best practices for making model-based/simulation-aided engineering more efficient at any phase of the system life cycle. The proposals are aimed at creating value, not only by increasing the performance of the product under study but also by shortening the time to market, capitalizing knowledge, mitigating risks and facilitating concurrent engineering. The needs associated with the engineering activities are firstly identified to define a set of requirements for the models. Then, these requirements are used to drive the considerations leading to model development, focusing in particular on the process, modelled physical effects, modelling level, model architecting and concurrent engineering. The third part deals with the model implementation, giving special consideration to the different types of models, causalities, parameterization, implementation and verification. Each part is illustrated by examples related to safety critical actuators.  相似文献   
4.
5.
In the aerospace field, electromechanical actuators are increasingly being implemented in place of conventional hydraulic actuators. For safety-critical embedded actuation applications like flight controls, the use of electromechanical actuators introduces specific issues related to thermal balance, reflected inertia, parasitic motion due to compliance and response to failure. Unfortu-nately, the physical effects governing the actuator behaviour are multidisciplinary, coupled and nonlinear. Although numerous multi-domain and system-level simulation packages are now avail-able on the market, these effects are rarely addressed as a whole because of a lack of scientific approaches for model architecting, multi-purpose incremental modelling and judicious model implementation. In this publication, virtual prototyping of electromechanical actuators is addressed using the Bond-Graph formalism. New approaches are proposed to enable incremental modelling, thermal balance analysis, response to free-run or jamming faults, impact of compliance on parasitic motion, and influence of temperature. A special focus is placed on friction and compliance of the mechanical transmission with fault injection and temperature dependence. Aileron actuation is used to highlight the proposals for control design, energy consumption and thermal analysis, power net-work pollution analysis and fault response.  相似文献   
6.
Impact analysis of the transponder time delay on radio-tracking observables   总被引:1,自引:0,他引:1  
Accurate tracking of probes is one of the key points of space exploration. Range and Doppler techniques are the most commonly used. In this paper we analyze the impact of the transponder delay, i.e. the processing time between reception and re-emission of a two-way tracking link at the satellite, on tracking observables and on spacecraft orbits. We show that this term, only partially accounted for in the standard formulation of computed space observables, can actually be relevant for future missions with high nominal tracking accuracies or for the re-processing of old missions. We present several applications of our formulation to Earth flybys, the NASA GRAIL and the ESA BepiColombo missions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号