首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   4篇
航空   5篇
  2024年   2篇
  2023年   2篇
  2022年   1篇
排序方式: 共有5条查询结果,搜索用时 203 毫秒
1
1.
为解决航空发动机宽弦空心风扇转子叶片抗鸟撞设计问题,对宽弦空心风扇转子叶片鸟撞损伤进行了数值仿真。采用光滑质点流体动力学(SPH)算法建立鸟体模型,采用J-C本构模型和失效模型定义材料冲击下动态性能,建立旋转状态下叶片鸟撞数值仿真方法,经过试验验证能够较准确预测叶片损伤。开展相同条件下鸟撞击宽弦空心和实心风扇转子叶片仿真,对比鸟撞击叶片过程、撞击时叶片叶尖最大轴向和径向变形、撞击后叶片永久变形,研究被鸟撞击后空心叶片相比实心叶片的损伤特征。结果表明:空心和实心叶片鸟撞击过程相同;空心叶片被鸟撞击后叶尖轴向和径向变形更小;空心叶片被鸟撞击后前缘卷边变形更严重,对风扇气动性能和稳定性影响更大;在结构设计时应适当增加前缘空心区域局部刚度,或者适当增大前缘实心区域范围,用于提高空心叶片的抗鸟撞能力。  相似文献   
2.
在航空发动机包容试验中,为满足叶片在根部失效的要求,设计了基于爆破切割技术的叶片根部飞断试验方法。通过平板静态爆破试验确定了柔爆索的切割能力,并使用柔爆索进行了真实叶片的静态爆破试验。在MTS拉伸试验机上对爆破切割后的损伤叶片进行了静拉伸试验,确定了损伤叶片的剩余强度为50~56 kN。按照静态爆破试验获得的开槽尺寸在叶片根部开槽并敷设柔爆索,采用树脂胶固定后,在立式转子试验器上采用遥控触发的方式进行了真实叶片旋转状态下的飞断试验。结果表明:在叶片两侧加工4 mm深沟槽并敷设柔爆索爆破后,叶片被柔爆索切割,并在预定飞断转速下失效飞出。飞断截面断口显示叶片中段被柔爆索的金属射流完全切断,前后缘在离心载荷作用下拉断,爆破作用没有对叶片产生附加动能,成功实现了叶片在预定转速下的根部断裂失效。  相似文献   
3.
某风扇试验件在进入喘振后发生转静子碰摩故障,转子叶片与其上游静子叶片的尾缘发生碰摩并产生掉块、卷边等损 伤。为明确故障发生的原因,结合数值仿真和试验结果排除了共振和颤振的发生。根据压力脉动数据确定了喘振载荷,并考虑在 喘振作用下轴向力轻载反向、转速升高、机匣变形、静子叶片变形等因素的影响,开展了基于尺寸链的转静子叶片热态间隙分析, 对叶片在喘振载荷作用下的碰摩响应进行了模拟分析。结果表明:在喘振载荷短时冲击作用下,转子叶片向后缘方向产生3.42 mm的 变形,收敛型风扇通道使得径向间隙明显减小,叠加风扇转速升高、轴向力轻载反向等因素,转子叶片叶尖尾缘轴向向后的位移超 出机匣涂层覆盖区域0.41 mm,导致尾缘与机匣基体的径向间隙为-0.44 mm,进而发生径向碰摩;在多次往复的大冲击载荷作用 下,转子叶片向前与上游静子叶片发生轴向碰摩。合理设置机匣耐磨涂层长度和流道倾角可以有效降低喘振过程中碰摩的风险。  相似文献   
4.
为探究某发动机棘轮离合器起动过程中棘爪断裂的原因,考虑了冲击载荷的动载荷系数影响,开展了棘爪受力分析、有限元仿真分析,以及棘爪静力试验和抗冲击试验等研究工作,获得了棘爪在静载荷和冲击载荷作用下的破坏模式和破坏载荷,确定了棘爪的强度储备。同时,在实测电机起动过程中发现了电流和扭矩变化规律:电流出现非常明显的突降和突升现象,电流从突降到突升的过程非常短暂,棘轮与棘爪瞬间高速碰撞,是起动过程中产生较大冲击载荷的根源。综合分析结果表明:起动电机在起动过程中因电流突降突升产生的较大冲击载荷超过了棘爪的实际承载能力,从而导致了棘爪的瞬时过载断裂。  相似文献   
5.
随着整体叶盘结构在航空发动机中的广泛应用,其抗高周疲劳能力设计愈发重要。为了提高整体叶盘结构的减振能 力,以风扇整体叶盘模型试验件为研究对象,设计了2种安装在缘板下方的阻尼环,阻尼环与槽道之间通过摩擦碰撞的方式来消 耗振动能量,从而降低结构振动响应。通过谐波平衡法开展了阻尼减振效果分析,获得了在不安装阻尼环、安装长方形截面阻尼 环和安装圆形截面阻尼环3种工况下的相对响应幅值。通过采用自由振动衰减法在不同叶片上进行敲击,测试获得3种工况下风 扇叶盘前4阶模态对应的阻尼特性。结果表明:在相同激励下,不安装阻尼环、安装长方形阻尼环和安装圆形阻尼环的相对响应 幅值分别为0.126%、0.98%和0.168%,圆形阻尼环具有较好的减振效果,与试验结果吻合较好。说明在配合关系合理的情况下,阻 尼环与配合槽道摩擦接触消耗能量,降低了风扇整体叶盘的响应,增大了叶盘的低阶阻尼比。研究结果对工程上整体叶盘结构减 振设计具有一定的参考价值。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号