首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   2篇
  国内免费   4篇
航空   58篇
航天技术   40篇
航天   35篇
  2021年   5篇
  2019年   6篇
  2018年   10篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   10篇
  2013年   19篇
  2012年   3篇
  2011年   8篇
  2010年   2篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1978年   2篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有133条查询结果,搜索用时 250 毫秒
111.
This study presents a semi-analytic approach for optimal tracking and formation keeping with high precision. For a continuous-thrust propulsion system, optimal formation keeping problems near a general Keplerian orbit are formulated with respect to a reference trajectory which is an explicit function of time. A nonlinear optimal tracking control law is then derived in generic form as a function of the states by employing generating functions in the theory of Hamiltonian systems. The applicability of the overall process is not affected by the complexity of dynamics and the selection of coordinates. As it allows us to design a nonlinear optimal feedback controller in the Earth-centered inertial frame, a variety of nonlinear perturbations can be incorporated easily without complicated coordinate transformations. Numerical experiments demonstrate that the nonlinear tracking control logic achieves superior tracking accuracy and cost reduction by accommodating higher-order nonlinearities.  相似文献   
112.
The presence of nonprotein α-dialkyl-amino acids such as α-aminoisobutyric acid (α-AIB) and isovaline (Iva), which are considered to be relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids. However, recent work showing the presence of α-AIB and Iva in peptides produced by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the α-AIB observed in some meteorites. We measured the amino acid distribution and stable carbon and nitrogen isotopic composition of four α-AIB-containing fungal peptides and compared this data to similar meteoritic measurements. We show that the relatively simple distribution of the C(4) and C(5) amino acids in fungal peptides is distinct from the complex distribution observed in many carbonaceous chondrites. We also identify potentially diagnostic relationships between the stable isotopic compositions of pairs of amino acids from the fungal peptides that may aid in ruling out fungal contamination as a source of meteoritic amino acids.  相似文献   
113.
We built a new experimental apparatus (the “Satellite/lunar laser ranging Characterization Facility”, SCF) and created a new test procedure (the SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of cube corner laser retroreflectors in space for industrial and scientific applications. The primary goal of these innovative tools is to provide critical design and diagnostic capabilities for Satellites Laser Ranging (SLR) to Galileo and other GNSS (Global Navigation Satellite System) constellations. The capability will allow us to optimize the design of GNSS laser retroreflector payloads to maximize ranging efficiency, to improve signal-to-noise conditions in daylight and to provide pre-launch validation of retroreflector performance under laboratory-simulated space conditions. Implementation of new retroreflector designs being studied will help to improve GNSS orbits, which will then increase the accuracy, stability, and distribution of the International Terrestrial Reference Frame (ITRF), to provide better definition of the geocenter (origin) and the scale (length unit).  相似文献   
114.
The design and operation of the Genesis Solar-Wind Concentrator relies heavily on computer simulations. The computer model is described here, as well as the solar wind conditions used as simulation inputs, including oxygen charge state, velocity, thermal, and angular distributions. The simulation included effects such as ion backscattering losses, which also affect the mass fractionation of the instrument. Calculations were performed for oxygen, the principal element of interest, as well as for H and He. Ion fluences and oxygen mass fractionation are determined as a function of radius on the target. The results were used to verify that the instrument was indeed meeting its requirements, and will help prepare for distribution of the target samples upon return of the instrument to earth. The actual instrumental fractionation will be determined at that time by comparing solar-wind neon isotope ratios measured in passive collectors with neon in the Concentrator target, and by using a model similar to the one described here to extrapolate the instrumental fractionation to oxygen isotopes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
115.
The detection of exolife is one of the goals of very ambitious future space missions that aim to take direct images of Earth-like planets. While associations of simple molecules present in the planet’s atmosphere (O2, O3, CO2, etc.) have been identified as possible global biomarkers, this paper reviews the detectability of a signature of life from the planet’s surface, i.e. the green vegetation. The vegetation reflectance has indeed a specific spectrum, with a sharp edge around 700 nm, known as the “Vegetation Red Edge” (VRE). Moreover, vegetation covers a large surface of emerged lands, from tropical evergreen forest to shrub tundra. Thus, considering vegetation as a potential global biomarker is relevant. Earthshine allows us to observe the Earth as a distant planet, i.e. without spatial resolution. Since 2001, Earthshine observations have been used by several authors to test and quantify the detectability of the VRE in the Earth spectrum. The vegetation spectral signature is detected as a small “positive shift” of a few percentage points above the continuum, starting at 700 nm. This signature appears in most spectra, and its strength is correlated with the Earth’s phase (visible land versus visible ocean). The observations show that detecting the VRE on Earth requires a photometric relative accuracy of 1% or better. Detecting something equivalent on an Earth-like planet will therefore remain challenging, especially considering the possibility of mineral artifacts and the question of “red edge” universality in the Universe.  相似文献   
116.
Current thinking about the Moon as a destination has revitalized interest in lunar astronomical observatories. Once seen by a large scientific community as a highly enabling site, the dramatic improvement in capabilities for free-space observatories prompts reevaluation of this interest. Whereas the lunar surface offers huge performance advantages for astronomy over terrestrial sites, free-space locales such as Earth orbit or Lagrange points offer performance that is superior to what could be achieved on the Moon. While astronomy from the Moon may be cost-effective once infrastructure is there, it is in many respects no longer clearly enabling compared with free space.  相似文献   
117.
Altimetry is now routinely used to monitor stage variations over rivers, including in the Amazon basin. It is desirable for hydrologic studies to be able to combine altimetry from different satellite missions with other hydrogeodesy datasets such as leveled gauges and watershed topography. One requirement is to accurately determine altimetry bias, which could be different for river studies from the altimetry calibrated for deep ocean or lake applications. In this study, we estimate the bias in the Envisat ranges derived from the ICE-1 waveform retracking, which are nowadays widely used in hydrologic applications. As a reference, we use an extensive dataset of altitudes of gauge zeros measured by GPS collocated at the gauges. The thirty-nine gauges are spread along the major tributaries of the Amazon basin. The methodology consists in jointly modeling the vertical bias and spatial and temporal slope variations between altimetry series located upstream and downstream of each gauge. The resulting bias of the Envisat ICE-1 retracked altimetry over rivers is 1.044 ± 0.212 m, revealing a significant departure from other Envisat calibrations or from the Jason-2 ICE-1 calibration.  相似文献   
118.
A supernova (SN) explosion drives stellar debris into the circumstellar material (CSM) filling a region on a scale of parsecs with X-ray emitting plasma. The velocities involved in supernova remnants (SNRs), thousands of km?s?1, can be directly measured with medium and high-resolution X-ray spectrometers and add an important dimension to our understanding of the last stages of the progenitor, the explosion mechanism, and the physics of strong shocks. After touching on the ingredients of SNR kinematics, I present a summary of the still-growing measurement results from SNR X-ray observations. Given the advances in 2D/3D hydrodynamics, data analysis techniques, and especially X-ray instrumentation, it is clear that our view of SNRs will continue to deepen in the decades ahead.  相似文献   
119.
120.
The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus Express are already producing high quality data: as far as Rosetta is concerned, the Earth-Moon system has been successfully observed during the Earth Swing-By manouver (March 2005) and furthermore, VIRTIS will collect data when Rosetta flies by Mars in February 2007 at a distance of about 200 kilometres from the planet. Data from the Rosetta mission will result in a comparison – using the same combination of sophisticated experiments – of targets that are poorly differentiated and are representative of the composition of different environment of the primordial solar system. Comets and asteroids, in fact, are in close relationship with the planetesimals, which formed from the solar nebula 4.6 billion years ago. The Rosetta mission payload is designed to obtain this information combining in situ analysis of comet material, obtained by the small lander Philae, and by a long lasting and detailed remote sensing of the comet, obtained by instrument on board the orbiting Spacecraft. The combination of remote sensing and in situ measurements will increase the scientific return of the mission. In fact, the “in situ” measurements will provide “ground-truth” for the remote sensing information, and, in turn, the locally collected data will be interpreted in the appropriate context provided by the remote sensing investigation. VIRTIS is part of the scientific payload of the Rosetta Orbiter and will detect and characterise the evolution of specific signatures – such as the typical spectral bands of minerals and molecules – arising from surface components and from materials dispersed in the coma. The identification of spectral features is a primary goal of the Rosetta mission as it will allow identification of the nature of the main constituent of the comets. Moreover, the surface thermal evolution during comet approach to sun will be also studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号