首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
航空   11篇
  2013年   2篇
  2009年   3篇
  2007年   4篇
  2003年   2篇
排序方式: 共有11条查询结果,搜索用时 265 毫秒
1.
The concentrator on Genesis provided samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition. The concentration process caused mass fractionation as a function of the radial target position. This fractionation was measured using Ne released by UV laser ablation and compared with modelled Ne data, obtained from ion-trajectory simulations. Measured data show that the concentrator performed as expected and indicate a radially symmetric concentration process. Measured concentration factors are up to ∼30 at the target centre. The total range of isotopic fractionation along the target radius is 3.8%/amu, with monotonically decreasing 20Ne/22Ne towards the centre, which differs from model predictions. We discuss potential reasons and propose future attempts to overcome these disagreements.  相似文献   
2.
Analysis of the Genesis samples is underway. Preliminary elemental abundances based on Genesis sample analyses are in good agreement with in situ-measured elemental abundances made by ACE/SWICS during the Genesis collection period. Comparison of these abundances with those of earlier solar cycles indicates that the solar wind composition is relatively stable between cycles for a given type of flow. ACE/SWICS measurements for the Genesis collection period also show a continuum in compositional variation as a function of velocity for the quasi-stationary flow that defies the simple binning of samples into their sources of coronal hole (CH) and interstream (IS).  相似文献   
3.
The Genesis mission returned samples of solar wind to Earth in September 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole (CH), interstream (IS), and coronal mass ejection material were obtained. Although many substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These objectives include He, Ne, Ar, Kr, and Xe isotope ratios in the bulk solar wind and in different solar-wind regimes, and 15N/14N and 18O/17O/16O to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have now been analyzed. Helium results show clear evidence of isotopic fractionation between CH and IS samples, consistent with simplistic Coulomb drag theory predictions of fractionation between the photosphere and different solar-wind regimes, though fractionation by wave heating is also a possible explanation. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of an additional, energetic component in solar wind trapped in lunar grains and meteorites. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are in the process of being measured.  相似文献   
4.
The Genesis mission Solar Wind Concentrator was built to enhance fluences of solar wind by an average of 20x over the 2.3 years that the mission exposed substrates to the solar wind. The Concentrator targets survived the hard landing upon return to Earth and were used to determine the isotopic composition of solar-wind—and hence solar—oxygen and nitrogen. Here we report on the flight operation of the instrument and on simulations of its performance. Concentration and fractionation patterns obtained from simulations are given for He, Li, N, O, Ne, Mg, Si, S, and Ar in SiC targets, and are compared with measured concentrations and isotope ratios for the noble gases. Carbon is also modeled for a Si target. Predicted differences in instrumental fractionation between elements are discussed. Additionally, as the Concentrator was designed only for ions ≤22 AMU, implications of analyzing elements as heavy as argon are discussed. Post-flight simulations of instrumental fractionation as a function of radial position on the targets incorporate solar-wind velocity and angular distributions measured in flight, and predict fractionation patterns for various elements and isotopes of interest. A tighter angular distribution, mostly due to better spacecraft spin stability than assumed in pre-flight modeling, results in a steeper isotopic fractionation gradient between the center and the perimeter of the targets. Using the distribution of solar-wind velocities encountered during flight, which are higher than those used in pre-flight modeling, results in elemental abundance patterns slightly less peaked at the center. Mean fractionations trend with atomic mass, with differences relative to the measured isotopes of neon of +4.1±0.9 ‰/amu for Li, between ?0.4 and +2.8 ‰/amu for C, +1.9±0.7‰/amu for N, +1.3±0.4 ‰/amu for O, ?7.5±0.4 ‰/amu for Mg, ?8.9±0.6 ‰/amu for Si, and ?22.0±0.7 ‰/amu for S (uncertainties reflect Monte Carlo statistics). The slopes of the fractionation trends depend to first order only on the relative differential mass ratio, Δm/m. This article and a companion paper (Reisenfeld et al. 2012, this issue) provide post-flight information necessary for the analysis of the Genesis solar wind samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).  相似文献   
5.
The Interstellar Boundary Explorer (IBEX) is a small explorer mission that launched on 19 October 2008 with the sole, focused science objective to discover the global interaction between the solar wind and the interstellar medium. IBEX is designed to achieve this objective by answering four fundamental science questions: (1) What is the global strength and structure of the termination shock, (2) How are energetic protons accelerated at the termination shock, (3) What are the global properties of the solar wind flow beyond the termination shock and in the heliotail, and (4) How does the interstellar flow interact with the heliosphere beyond the heliopause? The answers to these questions rely on energy-resolved images of energetic neutral atoms (ENAs), which originate beyond the termination shock, in the inner heliosheath. To make these exploratory ENA observations IBEX carries two ultra-high sensitivity ENA cameras on a simple spinning spacecraft. IBEX’s very high apogee Earth orbit was achieved using a new and significantly enhanced method for launching small satellites; this orbit allows viewing of the outer heliosphere from beyond the Earth’s relatively bright magnetospheric ENA emissions. The combination of full-sky imaging and energy spectral measurements of ENAs over the range from ~10 eV to 6 keV provides the critical information to allow us to achieve our science objective and understand this global interaction for the first time. The IBEX mission was developed to provide the first global views of the Sun’s interstellar boundaries, unveiling the physics of the heliosphere’s interstellar interaction, providing a deeper understanding of the heliosphere and thereby astrospheres throughout the galaxy, and creating the opportunity to make even greater unanticipated discoveries.  相似文献   
6.
The Plasma Experiment for Planetary Exploration (PEPE) flown on Deep Space 1 combines an ion mass spectrometer and an electron spectrometer in a single, low-resource instrument. Among its novel features PEPE incorporates an electrostatically swept field-of-view and a linear electric field time-of-flight mass spectrometer. A significant amount of effort went into developing six novel technologies that helped reduce instrument mass to 5.5 kg and average power to 9.6 W. PEPE’s performance was demonstrated successfully by extensive measurements made in the solar wind and during the DS1 encounter with Comet 19P/Borrelly in September 2001. P. Barker is deceased.  相似文献   
7.
We describe the Genesis mission solar-wind sample collection period and the solar wind conditions at the L1 point during this 2.3-year period. In order to relate the solar wind samples to solar composition, the conditions under which the samples were collected must be understood in the context of the long-term solar wind. We find that the state of the solar wind was typical of conditions over the past four solar cycles. However, Genesis spent a relatively large fraction of the time in coronal-hole flow as compared to what might have been expected for the declining phase of the solar cycle. Data from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE) are used to determine the effectiveness of the Genesis solar-wind regime selection algorithm. The data collected by SWICS confirm that the Genesis algorithm successfully separated and collected solar wind regimes having distinct solar origins, particularly in the case of the coronal hole sample. The SWICS data also demonstrate that the different regimes are elementally fractionated. When compared with Ulysses composition data from the previous solar cycle, we find a similar degree of fractionation between regimes as well as fractionation relative to the average photospheric composition. The Genesis solar wind samples are under long-term curation at NASA Johnson Space Center so that as sample analysis techniques evolve, pristine solar wind samples will be available to the scientific community in the decades to come. This article and a companion paper (Wiens et al. 2013, this issue) provide post-flight information necessary for the analysis of the Genesis array and foil solar wind samples and the Genesis solar wind ion concentrator samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).  相似文献   
8.
The Interstellar Boundary Explorer (IBEX) Science Operations Center is responsible for supporting analysis of IBEX data, generating special payload command procedures, delivering the IBEX data products, and building the global heliospheric maps of energetic neutral atoms (ENAs) in collaboration with the IBEX team. We describe here the data products and flow, the sensor responses to ENA fluxes, the heliospheric transmission of ENAs (from 100 AU to 1 AU), and the process of building global maps of the heliosphere. The vast majority of IBEX Science Operations Center (ISOC) tools are complete, and the ISOC is in a remarkable state of readiness due to extensive reviews, tests, rehearsals, long hours, and support from the payload teams. The software has been designed specifically to support considerable flexibility in the process of building global flux maps. Therefore, as we discover the fundamental properties of the interstellar interaction, the ISOC will iteratively improve its pipeline software, and, subsequently, the heliospheric flux maps that will provide a keystone for our global understanding of the solar wind’s interaction with the interstellar medium. The ISOC looks forward to the next chapter of the IBEX mission, as the tools we have developed will be used in partnership with the IBEX team and the scientific community over the coming years to define our global understanding of the solar wind’s interaction with the local interstellar medium.  相似文献   
9.
The IBEX-Hi Neutral Atom Imager of the Interstellar Boundary Explorer (IBEX) mission is designed to measure energetic neutral atoms (ENAs) originating from the interaction region between the heliosphere and the local interstellar medium (LISM). These ENAs are plasma ions that have been heated in the interaction region and neutralized by charge exchange with the cold neutral atoms of the LISM that freely flow through the interaction region. IBEX-Hi is a single pixel ENA imager that covers the ENA spectral range from 0.38 to 6 keV and shares significant energy overlap and overall design philosophy with the IBEX-Lo sensor. Because of the anticipated low flux of these ENAs at 1 AU, the sensor has a large geometric factor and incorporates numerous techniques to minimize noise and backgrounds. The IBEX-Hi sensor has a field-of-view (FOV) of 6.5°×6.5° FWHM, and a 6.5°×360° swath of the sky is imaged over each spacecraft spin. IBEX-Hi utilizes an ultrathin carbon foil to ionize ENAs in order to measure their energy by subsequent electrostatic analysis. A multiple coincidence detection scheme using channel electron multiplier (CEM) detectors enables reliable detection of ENAs in the presence of substantial noise. During normal operation, the sensor steps through six energy steps every 12 spacecraft spins. Over a single IBEX orbit of about 8 days, a single 6.5°×360° swath of the sky is viewed, and re-pointing of the spin axis toward the Sun near perigee of each IBEX orbit moves the ecliptic longitude by about 8° every orbit such that a full sky map is acquired every six months. These global maps, covering the spectral range of IBEX-Hi and coupled to the IBEX-Lo maps at lower and overlapping energies, will answer fundamental questions about the structure and dynamics of the interaction region between the heliosphere and the LISM.  相似文献   
10.
The design and operation of the Genesis Solar-Wind Concentrator relies heavily on computer simulations. The computer model is described here, as well as the solar wind conditions used as simulation inputs, including oxygen charge state, velocity, thermal, and angular distributions. The simulation included effects such as ion backscattering losses, which also affect the mass fractionation of the instrument. Calculations were performed for oxygen, the principal element of interest, as well as for H and He. Ion fluences and oxygen mass fractionation are determined as a function of radius on the target. The results were used to verify that the instrument was indeed meeting its requirements, and will help prepare for distribution of the target samples upon return of the instrument to earth. The actual instrumental fractionation will be determined at that time by comparing solar-wind neon isotope ratios measured in passive collectors with neon in the Concentrator target, and by using a model similar to the one described here to extrapolate the instrumental fractionation to oxygen isotopes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号