首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   0篇
  国内免费   3篇
航空   152篇
航天技术   48篇
综合类   1篇
航天   48篇
  2022年   1篇
  2021年   5篇
  2019年   3篇
  2018年   33篇
  2017年   18篇
  2016年   1篇
  2015年   7篇
  2014年   3篇
  2013年   11篇
  2012年   7篇
  2011年   11篇
  2010年   11篇
  2009年   12篇
  2008年   7篇
  2007年   14篇
  2006年   4篇
  2005年   11篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1986年   2篇
  1985年   9篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   9篇
  1978年   1篇
  1970年   1篇
  1967年   1篇
  1963年   1篇
排序方式: 共有249条查询结果,搜索用时 953 毫秒
91.
92.
The design presented in this paper is in response to the revolution in private space activities, the increasing public interest in commercial flights to space and the utilization of structures such as space hotels or private orbital habitats. The baseline for the Omicron design concept is the Russian Salyut derived space station module. Salyut was the first space station to orbit the Earth. Its unique design and technical features were what made the development of space stations Salyut 1–7, MIR and the International Space Station (ISS) Zwezda service module possible. Due to its versatility and the reliable operating launch vehicle Proton, this space module series has the potential to be adapted for space hotel development. This paper proposes a conceptual design of the space habitat called Omicron, with particular focus on interior design for the microgravity environment. The Omicron concepts address the needs of space tourism with a strong emphasis on the safety and comfort of the spaceflight participants. The Omicron habitat supports three inhabitants in nominal conditions (e.g., two passengers and one astronaut). The habitat provides a flexible interior, facilities and spaces dynamically transforming in order to accommodate various types of activities, which will be performed in an organically formed interior supporting spatial orientation and movement in microgravity. The future development potential of Omicron is also considered. The baseline version is composed solely of one rigid module with an inverted cupola for observations. An alternative version offers more space using an inflatable structure. Finally, a combination of multiple Omicron modules enables the creation of a larger orbital habitat. The Omicron's subsystems support a few days visit by trained passengers. The transport to the habitat would be provided e.g., by the Soyuz TMA spacecraft carried by the Soyuz launch vehicle in the early stage of Omicron's development, before a fully reusable spacecraft would be available.  相似文献   
93.
The alpha-particle X-ray spectrometer (APXS) for the Mars Science Laboratory (MSL) mission was calibrated for routine analysis of: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Zn, Br, Rb, Sr, and Y. The following elements were also calibrated, but may be too low to be measured (10s–100s ppm) for their usual abundance on Mars: V, Cu, Ga, As, Se and W. An extensive suite of geological reference materials, supplemented by pure chemical elements and compounds was used. Special attention was paid to include phyllosilicates, sulfates and a broad selection of basalts as these are predicted minerals and rocks at the Gale Crater landing site. The calibration approach is from first principles, using fundamental physics parameters and an assumed homogeneous sample matrix to calculate expected elemental signals for a given instrument setup and sample composition. Resulting concentrations for most elements accord with expected values. Deviations in elements of lower atomic number (Na, Mg, Al) indicate significant influences of mineral phases, especially in basalts, ultramafic rocks and trachytes. The systematics of these deviations help us to derive empirical, iterative corrections for different rock groups, based on a preliminary APXS analysis which assumes a homogeneous sample. These corrections have the potential to significantly improve the accuracy of APXS analyses, especially when other MSL instrument results, such as the X-ray diffraction data from CheMin, are included in the overall analysis process.  相似文献   
94.
We describe recent progress in physics-based models of the plasmasphere using the fluid and the kinetic approaches. Global modeling of the dynamics and influence of the plasmasphere is presented. Results from global plasmasphere simulations are used to understand and quantify (i) the electric potential pattern and evolution during geomagnetic storms, and (ii) the influence of the plasmasphere on the excitation of electromagnetic ion cyclotron (EMIC) waves and precipitation of energetic ions in the inner magnetosphere. The interactions of the plasmasphere with the ionosphere and the other regions of the magnetosphere are pointed out. We show the results of simulations for the formation of the plasmapause and discuss the influence of plasmaspheric wind and of ultra low frequency (ULF) waves for transport of plasmaspheric material. Theoretical models used to describe the electric field and plasma distribution in the plasmasphere are presented. Model predictions are compared to recent Cluster and Image observations, but also to results of earlier models and satellite observations.  相似文献   
95.
On 14 July 1998 TRACE observed transverse oscillations of a coronal loop generated by an external disturbance most probably caused by a solar flare. These oscillations were interpreted as standing fast kink waves in a magnetic flux tube. Firstly, in this review we embark on the discussion of the theory of waves and oscillations in a homogeneous straight magnetic cylinder with the particular emphasis on fast kink waves. Next, we consider the effects of stratification, loop expansion, loop curvature, non-circular cross-section, loop shape and magnetic twist. An important property of observed transverse coronal loop oscillations is their fast damping. We briefly review the different mechanisms suggested for explaining the rapid damping phenomenon. After that we concentrate on damping due to resonant absorption. We describe the latest analytical results obtained with the use of thin transition layer approximation, and then compare these results with numerical findings obtained for arbitrary density variation inside the flux tube. Very often collective oscillations of an array of coronal magnetic loops are observed. It is natural to start studying this phenomenon from the system of two coronal loops. We describe very recent analytical and numerical results of studying collective oscillations of two parallel homogeneous coronal loops. The implication of the theoretical results for coronal seismology is briefly discussed. We describe the estimates of magnetic field magnitude obtained from the observed fundamental frequency of oscillations, and the estimates of the coronal scale height obtained using the simultaneous observations of the fundamental frequency and the frequency of the first overtone of kink oscillations. In the last part of the review we summarise the most outstanding and acute problems in the theory of the coronal loop transverse oscillations.  相似文献   
96.
The Rotation and Interior Structure Experiment (RISE) on-board the InSight mission will use the lander’s X-band (8 GHz) radio system in combination with tracking stations of the NASA Deep Space Network (DSN) to determine the rotation of Mars. RISE will measure the nutation of the Martian spin axis, detecting for the first time the effect of the liquid core of Mars and providing in turn new constraints on the core radius and density. RISE will also measure changes in the rotation rate of Mars on seasonal time-scales thereby constraining the atmospheric angular momentum budget. Finally, RISE will provide a superb tie between the cartographic and inertial reference frames. This paper describes the RISE scientific objectives and measurements, and provides the expected results of the experiment.  相似文献   
97.
98.
Detecting mineral-hosted ecosystems to assess the extent and functioning of the biosphere from the surface to deep Earth requires appropriate techniques that provide, beyond the morphological criteria, indubitable clues of the presence of prokaryotic cells. Here, we evaluate the capability of cathodoluminescence microscopy and spectroscopy, implemented on a scanning electron microscope, to identify prokaryotes on mineral surfaces. For this purpose, we used, as a first step, a simple model of either unstained or stained cultivable cells (Escherichia coli, Deinococcus radiodurans) deposited on minerals that are common in the oceanic crust (basaltic glass, amphibole, pyroxene, and magnetite). Our results demonstrate that the detection of cells is possible at the micrometric level on the investigated minerals through the intrinsic fluorescence of their constituting macromolecules (aromatic amino and nucleic acids, coenzymes). This allows us to distinguish biomorph inorganic phases from cells. This easily implemented technique permits an exploration of colonized rock samples. In addition, the range of spectrometric techniques available on a scanning electron microscope can provide additional information on the nature and chemistry of the associated mineral phases, which would lead to a simultaneous characterization of cells, their microhabitats, and a better understanding of their potential relationships.  相似文献   
99.
Internal processes in icy satellites, e.g. the exchange of material from the subsurface to the surface or processes leading to volcanism and resurfacing events, are a consequence of the amount of energy available in the satellites’ interiors. The latter is mainly determined shortly after accretion by the amount of radioactive isotopes incorporated in the silicates during the accretion process. However, for satellites—as opposed to single objects—important contributions to the energy budget on long time-scales can come from the interaction with other satellites (forcing of eccentricities of satellites in resonance) and consequently from the tidal interaction with the primary planet. Tidal evolution involves both changes of the rotation state—usually leading to the 1:1 spin orbit coupling—and long-term variations of the satellite orbits. Both processes are dissipative and thus connected with heat production in the interior. The way heat is transported from the interior to the surface (convection, conduction, (cryo-) volcanism) is a second main aspect that determines how internal processes in satellites work. In this chapter we will discuss the physics of heat production and heat transport as well as the rotational and orbital states of satellites. The relevance of the different heat sources for the moons in the outer solar system are compared and discussed.  相似文献   
100.
收集了Cluster卫星在2001-2005年间观测到的磁尾磁通量绳事件,并对磁通量绳(magnetic flux rope)形成及其内部磁场结构与行星际磁场(IMF)的关系作了统计研究.考虑磁通量绳被观测到时行星际磁场的条件,在所有73个磁通量绳事件中,行星际磁场By分量占有主导地位的事件有80%,且78%的事件具有与行星际磁场By分量相同方向的核心场.行星际磁场通过在磁层顶与地球磁场相互作用改变南北等离子体片内磁场相对方向,形成有利于磁通量绳形成的磁场位形,并且行星际磁场By分量的方向对磁通量绳内部核心场的方向具有决定性影响.从统计结果来看,磁通量绳的形成并不会依赖于行星际磁场Bz分量的方向.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号