共查询到20条相似文献,搜索用时 0 毫秒
1.
Autonomous control has an increasing role in Earth and Space based applications. High level autonomy can greatly improve planetary exploration and is, in many cases, essential. It has been suggested during the Mars cave exploration programme, that an effective way to explore a larger surface area would be the use of many, small and fully autonomous robots. However, there are many challenges to overcome if such a swarm exploration programme is to be implemented. This paper summarises these challenges and focuses on one of the most crucial one: strategy. Many effective group exploration behaviours can be observed in nature, most of which are optimised to work with agents that have limited capabilities as individuals. For this paper a computer program has been written to simulate the way bees search for new hives and investigate whenever it is an optimal method to search for cave entrances on Mars. It has been found that this method, using simple autonomous robots which can be constructed using available technologies, could greatly improve the speed and range of a planetary exploration mission. The simulation results show that 50 swarm robots can cover an area of over 300 meters square completely in 5 sols while they are searching for cave entrances and returning results to the Lander which is a major performance improvement on any previous mission. Furthermore areas of interests found by the explorers are sorted in order of importance automatically and without the need of computational analysis, hence larger quantities of data were collected from the more important areas. Therefore the system – just like a hive of bees – can make a complex decision easily and quickly to find the place which matches the required criteria best. Using a high performance search strategy such as the one described in this paper is crucial if we plan to search for important resources or even life on Mars and other bodies in the solar system. 相似文献
2.
This report provides a rationale for the advances in instrumentation and understanding needed to assess claims of ancient and extraterrestrial life made on the basis of morphological biosignatures. Morphological biosignatures consist of bona fide microbial fossils as well as microbially influenced sedimentary structures. To be recognized as evidence of life, microbial fossils must contain chemical and structural attributes uniquely indicative of microbial cells or cellular or extracellular processes. When combined with various research strategies, high-resolution instruments can reveal such attributes and elucidate how morphological fossils form and become altered, thereby improving the ability to recognize them in the geological record on Earth or other planets. Also, before fossilized microbially influenced sedimentary structures can provide evidence of life, criteria to distinguish their biogenic from non-biogenic attributes must be established. This topic can be advanced by developing process-based models. A database of images and spectroscopic data that distinguish the suite of bona fide morphological biosignatures from their abiotic mimics will avoid detection of false-positives for life. The use of high-resolution imaging and spectroscopic instruments, in conjunction with an improved knowledge base of the attributes that demonstrate life, will maximize our ability to recognize and assess the biogenicity of extraterrestrial and ancient terrestrial life. 相似文献
3.
If life ever existed, or still exists, on Mars, its record is likely to be found in minerals formed by, or in association with, microorganisms. An important concept regarding interpretation of the mineralogical record for evidence of life is that, broadly defined, life perturbs disequilibria that arise due to kinetic barriers and can impart unexpected structure to an abiotic system. Many features of minerals and mineral assemblages may serve as biosignatures even if life does not have a familiar terrestrial chemical basis. Biological impacts on minerals and mineral assemblages may be direct or indirect. Crystalline or amorphous biominerals, an important category of mineralogical biosignatures, precipitate under direct cellular control as part of the life cycle of the organism (shells, tests, phytoliths) or indirectly when cell surface layers provide sites for heterogeneous nucleation. Biominerals also form indirectly as by-products of metabolism due to changing mineral solubility. Mineralogical biosignatures include distinctive mineral surface structures or chemistry that arise when dissolution and/or crystal growth kinetics are influenced by metabolic by-products. Mineral assemblages themselves may be diagnostic of the prior activity of organisms where barriers to precipitation or dissolution of specific phases have been overcome. Critical to resolving the question of whether life exists, or existed, on Mars is knowing how to distinguish biologically induced structure and organization patterns from inorganic phenomena and inorganic self-organization. This task assumes special significance when it is acknowledged that the majority of, and perhaps the only, material to be returned from Mars will be mineralogical. 相似文献
4.
Aubrey AD Chalmers JH Bada JL Grunthaner FJ Amashukeli X Willis P Skelley AM Mathies RA Quinn RC Zent AP Ehrenfreund P Amundson R Glavin DP Botta O Barron L Blaney DL Clark BC Coleman M Hofmann BA Josset JL Rettberg P Ride S Robert F Sephton MA Yen A 《Astrobiology》2008,8(3):583-595
The Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission. The diverse and effective capabilities of Urey make it an integral part of the payload and will help to achieve a large portion of the mission's primary scientific objective: "to search for signs of past and present life on Mars." This instrument is named in honor of Harold Urey for his seminal contributions to the fields of cosmochemistry and the origin of life. 相似文献
5.
JW Schopf JD Farmer IS Foster AB Kudryavtsev VA Gallardo C Espinoza 《Astrobiology》2012,12(7):619-633
Abstract Orbital and in situ analyses establish that aerially extensive deposits of evaporitic sulfates, including gypsum, are present on the surface of Mars. Although comparable gypsiferous sediments on Earth have been largely ignored by paleontologists, we here report the finding of diverse fossil microscopic organisms permineralized in bottom-nucleated gypsums of seven deposits: two from the Permian (~260?Ma) of New Mexico, USA; one from the Miocene (~6?Ma) of Italy; and four from Recent lacustrine and saltern deposits of Australia, Mexico, and Peru. In addition to presenting the first report of the widespread occurrence of microscopic fossils in bottom-nucleated primary gypsum, we show the striking morphological similarity of the majority of the benthic filamentous fossils of these units to the microorganisms of a modern sulfuretum biocoenose. Based on such similarity, in morphology as well as habitat, these findings suggest that anaerobic sulfur-metabolizing microbial assemblages have changed relatively little over hundreds of millions of years. Their discovery as fossilized components of the seven gypsiferous units reported suggests that primary bottom-nucleated gypsum represents a promising target in the search for evidence of past life on Mars. Key Words: Confocal laser scanning microscopy-Gypsum fossils-Mars sample return missions-Raman spectroscopy-Sample Analysis at Mars (SAM) instrument-Sulfuretum. Astrobiology 12, 619-633. 相似文献
6.
Mars exploration program analysis group goal one: determine if life ever arose on Mars 总被引:1,自引:0,他引:1
The Mars Exploration Program Analysis Group (MEPAG) maintains a standing document that articulates scientific community goals, objectives, and priorities for mission-enabled Mars science. Each of the goals articulated within the document is periodically revisited and updated. The astrobiology-related Goal One, "Determine if life ever arose on Mars," has recently undergone such revision. The finalized revision, which appears in the version of the MEPAG Goals Document posted on September 24, 2010, is presented here. 相似文献
7.
Parro V de Diego-Castilla G Moreno-Paz M Blanco Y Cruz-Gil P Rodríguez-Manfredi JA Fernández-Remolar D Gómez F Gómez MJ Rivas LA Demergasso C Echeverría A Urtuvia VN Ruiz-Bermejo M García-Villadangos M Postigo M Sánchez-Román M Chong-Díaz G Gómez-Elvira J 《Astrobiology》2011,11(10):969-996
The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5?m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2?m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5?g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260?g kg(-1)) and perchlorate (41.13?μg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14?μg g(-1)) or formate (76.06?μg g(-1)) as electron donors, and sulfate (15875?μg g(-1)), nitrate (13490?μg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars. 相似文献
8.
9.
The jarosite group minerals have received increasing attention since the discovery of jarosite on the martian surface by the Mars Exploration Rover Opportunity. Given that jarosite can incorporate foreign ions within its structure, we have investigated the use of jarosite as an indicator of aqueous and biological processes on Earth and Mars. The use of laser desorption Fourier transform mass spectrometry has revealed the presence of organic matter in several jarosite samples from various locations worldwide. One of the ions from the natural jarosites has been attributed to glycine because it was systematically observed in combinations of glycine with synthetic ammonium and potassium jarosites, Na(2)SO(4) and K(2)SO(4). The ability to observe these organic signatures in jarosite samples with an in situ instrumental technique, such as the one employed in this study, furthers the goals of planetary geologists to determine whether signs of life (e.g., the presence of biomolecules or biomolecule precursors) can be detected in the rock record of terrestrial and extraterrestrial samples. 相似文献
10.
The Siljan ring structure (368 +/- 1.1 Ma) is the largest known impact structure in Europe. It isa 65-km-wide, eroded, complex impact structure, displaying several structural units, including a central uplifted region surrounded by a ring-shaped depression. Associated with the impact crater are traces of a post-impact hydrothermal system indicated by precipitated and altered hydrothermal mineral assemblages. Precipitated hydrothermal minerals include quartz veins and breccia fillings associated with granitic rocks at the outer margin of the central uplift, and calcite, fluorite, galena, and sphalerite veins associated with Paleozoic carbonate rocks located outside the central uplift. Two-phase water/gas and oil/gas inclusions in calcite and fluorite display homogenization temperatures between 75 degrees C and 137 degrees C. With an estimated erosional unloading of approximately 1 km, the formation temperatures were probably not more than 10-15 degrees C higher. Fluid inclusion ice-melting temperatures indicate a very low salt content, reducing the probability that the mineralization was precipitated during the Caledonian Orogeny. Our findings suggest that large impacts induce low-temperature hydrothermal systems that may be habitats for thermophilic organisms. Large impact structures on Mars may therefore be suitable targets in the search for fossil thermophilic organisms. 相似文献
11.
A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine. 相似文献
12.
13.
Following the water,the new program for Mars exploration 总被引:1,自引:0,他引:1
In the wake of the loss of Mars Climate Orbiter and Mars Polar Lander in late 1999, NASA embarked on a major review of the failures and subsequently restructured all aspects of what was then called the Mars Surveyor Program--now renamed the Mars Exploration Program. This paper presents the process and results of this reexamination and defines a new approach which we have called "Program System Engineering". Emphasis is given to the scientific, technological, and programmatic strategies that were used to shape the new Program. A scientific approach known as "follow the water" is described, as is an exploration strategy we have called "seek--in situ--sample". An overview of the mission queue from continuing Mars Global Surveyor through a possible Mars Sample Return Mission launch in 2011 is provided. In addition, key proposed international collaborations, especially those between NASA, CNES and ASI are outlined, as is an approach for a robust telecommunications infrastructure. 相似文献
14.
“Special regions” on Mars are areas designated in the COSPAR planetary protection policy as areas that may support Earth microbes inadvertently introduced to Mars, or that may have a high probability of supporting indigenous martian life. Since absolutely nothing is known about martian life, the operational definition of a special region is a place that may allow the formation and maintenance of liquid water, on or under the surface of Mars. This paper will review the special-regions concept, the implications of recent recommendations on avoiding them, and the work of the Mars science community in providing an operational definition of those areas on Mars that are “non-special.” 相似文献
15.
Parro V de Diego-Castilla G Rodríguez-Manfredi JA Rivas LA Blanco-López Y Sebastián E Romeral J Compostizo C Herrero PL García-Marín A Moreno-Paz M García-Villadangos M Cruz-Gil P Peinado V Martín-Soler J Pérez-Mercader J Gómez-Elvira J 《Astrobiology》2011,11(1):15-28
The search for unequivocal signs of life on other planetary bodies is one of the major challenges for astrobiology. The failure to detect organic molecules on the surface of Mars by measuring volatile compounds after sample heating, together with the new knowledge of martian soil chemistry, has prompted the astrobiological community to develop new methods and technologies. Based on protein microarray technology, we have designed and built a series of instruments called SOLID (for "Signs Of LIfe Detector") for automatic in situ detection and identification of substances or analytes from liquid and solid samples (soil, sediments, or powder). Here, we present the SOLID3 instrument, which is able to perform both sandwich and competitive immunoassays and consists of two separate functional units: a Sample Preparation Unit (SPU) for 10 different extractions by ultrasonication and a Sample Analysis Unit (SAU) for fluorescent immunoassays. The SAU consists of five different flow cells, with an antibody microarray in each one (2000 spots). It is also equipped with an exclusive optical package and a charge-coupled device (CCD) for fluorescent detection. We demonstrated the performance of SOLID3 in the detection of a broad range of molecular-sized compounds, which range from peptides and proteins to whole cells and spores, with sensitivities at 1-2?ppb (ng?mL?1) for biomolecules and 10? to 103 spores per milliliter. We report its application in the detection of acidophilic microorganisms in the Río Tinto Mars analogue and report the absence of substantial negative effects on the immunoassay in the presence of 50?mM perchlorate (20 times higher than that found at the Phoenix landing site). Our SOLID instrument concept is an excellent option with which to detect biomolecules because it avoids the high-temperature treatments that may destroy organic matter in the presence of martian oxidants. 相似文献
16.
C.D. Edwards J.T. Adams D.J. Bell R. Cesarone R. DePaula J.F. Durning T.A. Ely R.Y. Leung C.A. McGraw S.N. Rosell 《Acta Astronautica》2001,48(5-12)
The planned exploration of Mars will pose new and unique telecommunications and navigation challenges. The full range of orbital, atmospheric, and surface exploration will drive requirements on data return, energy-efficient communications, connectivity, and positioning. In this paper we will summarize the needs of the currently planned Mars exploration mission set, outline design trades and options for meeting these needs, and quantify the specific telecommunications and navigation capabilities of an evolving infrastructure. 相似文献
17.
The European space exploration programme: current status of ESA's plans for Moon and Mars exploration 总被引:1,自引:0,他引:1
After a large consultation with the scientific and industrial communities in Europe, the Aurora Space Exploration Programme was unanimously approved at the European Space Agency (ESA) Council at ministerial level in Edinburgh in 2001. This marked the start of the programme's preparation phase that was due to finish by the end of 2004. Aurora features technology development robotic and crewed rehearsal missions aimed at preparing a human mission to Mars by 2033. Due to the evolving context, both international and European, ESA has undertaken a review of the goals and approach of its exploration programme. While maintaining the main robotic missions that had been conceived during Aurora, the European Space Exploration Programme that is currently being proposed to the Aurora participating states and other ESA Member States has a reviewed approach and will feature a greater synergy with other ESA programmes. The paper will present the process that led to the revision of ESA's plans in the field of exploration and will give the current status of the programme. 相似文献
18.
The relatively recent discoveries that liquid water likely existed on the surface of past Mars and that methane currently exists in the martian atmosphere have fueled the possibility of extant or extinct life on Mars. One possible explanation for the existence of the methane would be the presence of methanogens in the subsurface. Methanogens are microorganisms in the domain Archaea that can metabolize molecular hydrogen as an energy source and carbon dioxide as a carbon source and produce methane. One factor of importance is the arid nature of Mars, at least at the surface. If one is to assume that life exists below the surface, then based on the only example of life that we know, liquid water must be present. Realistically, however, that liquid water may be seasonal just as it is at some locations on our home planet. Here we report on research designed to determine how long certain species of methanogens can survive desiccation on a Mars soil simulant, JSC Mars-1. Methanogenic cells were grown on JSC Mars-1, transferred to a desiccator within a Coy anaerobic environmental chamber, and maintained there for varying time periods. Following removal from the desiccator and rehydration, gas chromatographic measurements of methane indicated survival for varying time periods. Methanosarcina barkeri survived desiccation for 10 days, while Methanobacterium formicicum and Methanothermobacter wolfeii were able to survive for 25 days. 相似文献
19.
Understanding how hypobaria can affect net photosynthetic (P (net)) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO(2) levels were allowed to drawdown from 0.1 kPa to CO(2) compensation points to assess P (net) rates under different hypobaric conditions. Results showed that P (net) increased as the pressures decreased from 101 to 10 kPa when CO(2) partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO(2) was in the nonlimiting range from 0.10 to 0.07 kPa, the P (net) rates were insensitive to decreasing pressures. Thus, if CO(2 )concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P (net) rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species. 相似文献