首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   1篇
  国内免费   1篇
航空   104篇
航天技术   43篇
航天   31篇
  2021年   2篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2014年   4篇
  2013年   4篇
  2012年   6篇
  2011年   10篇
  2010年   4篇
  2009年   12篇
  2008年   8篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   7篇
  1996年   1篇
  1995年   2篇
  1994年   7篇
  1993年   8篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1985年   14篇
  1984年   6篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有178条查询结果,搜索用时 464 毫秒
61.
62.
63.
The interaction of a stellar magnetosphere with a thin accretion disk is considered. Specifically, I consider a model in which (1) the accretion disk is magnetically linked to the star over a large range of radii and (2) the magnetic diffusivity of the disk is sufficiently small that there is little slippage of field lines within the disk on the rotation time scale. In this case the magnetic energy built up as a result of differential rotation between the star and the disk is released in quasi-periodic reconnection events occuring in the magnetosphere (Aly and Kuijpers 1990). The radial transport of magnetic flux in such an accretion disk is considered. It is show that the magnetic flux distribution is stationary on the accretion time scale, provided the time average of the radial component of the field just above the disk vanishes. A simple model of the time-dependent structure of the magnetosphere is presented. It is shown that energy release in the magnetosphere must take place for (differential) rotation angles less than about 3 radians. The magnetic flux distribution in the disk depends on the precise value of the rotation angle.  相似文献   
64.
Yohkoh has observed many long duration events permitting a statistical study of the properties of these interesting events. We have selected ten flares for analysis which have durations between 5 and 20 hours, and size ranging from C to X GOES class. Employing the Soft X-ray Telescope, the Bragg Crystal Spectrometer, GOES spacecraft, and ground-based H data, we examine the morphology, temperature, emission measure, location of the hard X-ray source, non-thermal velocities and upflows of the plasma at different stages in the flare development. Our results are used to address the question of the energy source that maintains the hot plasma at temperatures of several million degrees for many hours.  相似文献   
65.
We have selected four widely different flares from the early period of operations of the Hard X-Ray Imaging Spectrometer (HXIS) on SMM to illustrate the characteristic imaging properties of this experiment. For the small flare of April 4, 1980, we demonstrate the instrument's capability for locating a compact source. In the weak, but extensive, flare of April 6 we show how well the instrument can display spatial structure, and also the low level of the instrument background. In the 1B flare of April 7 we are able to locate positions of the X-ray emission in the soft and hard channels, and estimate the positional variations of the emission patches. Finally, in the IN flare of April 10, which produced the strongest hard X-ray burst we have seen so far, we repeat some of the studies made for the April 7 event, and also demonstrate the capability of the HXIS instrument to study the development, with high time resolution, of individual 8″ × 8″ elements of the flare.  相似文献   
66.
We report results from EXOSAT observations of the intermediate polar system 2A0526-328 (TV Col). The hard X-ray emission (2–8 keV) is modulated with a period of 1943 s, interpreted as the white-dwarf rotation period. Soft and hard X-ray emission show intensity minima, in phase with the orbital period of 0.2286 days; analysis of the hard X-ray spectra shows that these minima are caused by an extra low-energy absorption corresponding to a H column density of 4 × 1022 cm-2.  相似文献   
67.
Solar and space radiation have been monitored using the R3D-B2 radiation risks radiometer-dosimeter on board a recent space flight on the Russian satellite Foton M2 within the ESA Biopan 5 facility mounted on the outside of the satellite exposed to space conditions. The solar radiation has been assayed in four wavelength bands (UV-C, 170–280 nm, UV-B, 280–315 nm), UV-A (315–400 nm) and PAR (photosynthetic active radiation, 400–700 nm). The data show an increasing tumbling rotation of the satellite during the mission. The photodiodes do not show a cosine response to the incident light which has been corrected. After calibration of the signals using the extraterrestrial spectrum, doses have been calculated for each orbit, for each day and for the total mission as basic data for the biological material which has been exposed in parallel in the Biopan facility. Cosmic ionizing radiation has been monitored and separated in 256 deposited energy spectra, which were further used for determination of the absorbed dose rate and flux. Basic data tables were prepared to be used by other Biopan 5 experiments. The paper summarizes the results for the Earth radiation environment at the altitude (262–304 km) of the Foton M2 spacecraft. Comparisons with the predictions of NASA Earth radiation environment experimental models AE-8 and AP-8, and the PSB97 model are also presented, which calculate the fluxes of ionizing radiation from a simulation. AP-8 is a model for trapped radiation.  相似文献   
68.
Precise Orbit Determination (POD) for the Gravity field and steady-state Ocean Circulation Explorer (GOCE), the first core explorer mission by the European Space Agency (ESA), forms an integrated part of the so-called High-Level Processing Facility (HPF). Two POD chains have been set up referred to as quick-look Rapid and Precise Science Orbit determination or RSO and PSO, respectively. These chains make use of different software systems and have latencies of 1 day and 2 weeks, respectively, after tracking data availability. The RSO and PSO solutions have to meet a 3-dimensional (3D) position precision requirement of 50 cm and a few cm, respectively. The tracking data will be collected by the new Lagrange GPS receiver and the predicted characteristics of this receiver have been taken into account during the implementation phase of the two chains.  相似文献   
69.
This paper highlights the design, qualification and mission performance of the tether deployer system on the second Young Engineers’ Satellite (YES2), that featured a tethered momentum transfer. The deployer is designed with a broad range of near-term tether applications in mind. The system contains the tether, including features to enhance safety and wound up in controlled manner onto a spool core, optical deployment sensors, a “barberpole” friction brake controlled by a stepper motor and a triple tether cutter system. To initiate the deployment a spring-based ejection system was developed, and to apply accurate momentum transfer a timer and release system is present on the subsatellite side. A small, 6 kg re-entry capsule was developed as subsatellite. On September 25th, 2007, YES2 deployed a 32 km tether in orbit and gathered a wealth of data. Confidence is gained from the mission results for use of the deployer in future missions.  相似文献   
70.
The Rotation and Interior Structure Experiment (RISE) on-board the InSight mission will use the lander’s X-band (8 GHz) radio system in combination with tracking stations of the NASA Deep Space Network (DSN) to determine the rotation of Mars. RISE will measure the nutation of the Martian spin axis, detecting for the first time the effect of the liquid core of Mars and providing in turn new constraints on the core radius and density. RISE will also measure changes in the rotation rate of Mars on seasonal time-scales thereby constraining the atmospheric angular momentum budget. Finally, RISE will provide a superb tie between the cartographic and inertial reference frames. This paper describes the RISE scientific objectives and measurements, and provides the expected results of the experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号