首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
White  N. E.  Culhane  J. L.  Parmar  A. N.  Kellett  B.  Kahn  S.  van den Oord  G. H. J.  Kuijpers  J. 《Space Science Reviews》1985,40(1-2):25-33
The X-ray emission from Algol is thought to originate in a corona associated with the K star in this system. We report the results of a 35 hr continuous EXOSAT observation through secondary optical eclipse that was designed to measure the structure of the corona. No obvious X-ray eclipse was seen. The spectrum measured by the ME gives a temperature of 2.5 × 107 K, consistent with the hard component previously seen by the Einstein SSS. The soft component previously reported by the SSS would only contribute at most 25% to the count rate seen in the LE (used with Al/P). The lack of a hard X-ray eclipse indicates the dimensions of the higher temperature emission region to be comparable to or greater than the size of the K star. An X-ray flare was detected with a peak luminosity of 1.4 × 1031 erg s-1 and a total duration of 8 hours. The peak temperature was 5.0 keV with an emission measure of 9.4 × 1053 cm-3. The thermal nature of the flare is confirmed by the detection of an iron line with an EW of 2 keV. By equating the observed decay time of the flare to a known cooling law gives a dimension for the flaring loop of 0.3 stellar radii. This is much smaller than the dimensions of the hard component inferred from the lack of an eclipse. It seems probable that the flare occurred in one of the loops responsible for the lower temperature component seen by the SSS.  相似文献   

2.
The BL Lac object Mkn 421 was observed by EXOSAT four times over a period of six days in February 1984. Significant X-ray variability was apparent on a timescale of less than a day, but with no accompanying spectral change. The source exhibited a very soft power law X-ray spectrum with an extremely low intrinsic column density (NH1020 cm–2). There was no evidence for an additional hard component attributable to synchrotron self-Compton emission. The observations when combined with other published data imply that significant changes occur in the form of the broad-band UV/X-ray continuum of this source.  相似文献   

3.
Summary On May 8, 1980, we conducted a 90 minute observation on hard X-ray emission (15-200 keV) from Her X-1, using a large area ( 1500 cm2), low background balloon borne X-ray telescope. The energy resolution of the telescope was 17% FWHM at 60 keV. Her X-1 was at binary phase 0.0725 and 2.7 ± 0.5 days after turn on in the 35 day cycle.Average pulsation light curves were obtained by sorting data into 25 equal bins, according to pulse arrival time, modulo the 1.24 sec pulsation period. The width of the main pulse is energy dependent and in the 45–75 keV region about 30% smaller than in the range from 15 to 30 keV.The data have been analyzed by taking the Her X-1 pulse minus background spectrum, where the pulse count rate is defined in a pulse phase interval around the pulse maximum of the 1.24 sec period. The background spectrum was intermittently obtained by a chopping collimator system.A spectral feature is present in emission at an energy of 49.5 (+ 1.5, -3) keV and a FWHM of 18 (+ 6, -3) keV and in absorption at an energy of 29.5 (+ 1.7, -1.5) keV and a FWHM of 17.0 (+ 2.6, -2.8) keV. The intensity of this line feature in emission is (1.8 ± 0.4) photons/cm sec. The line excess in emission over the continuum (with kT = 6.75 (+ 0.2, -0.4) keV) is 7.  相似文献   

4.
We present optical spectroscopy and photometry and IUE spectroscopy of the counterpart of the LMC recurrent X-ray transient A0538-66 during an outburst at the end of December 1980 which was consistent with the 16.6 day X-ray period (Skinner, 1980). The optical spectra show steadily increasing Balmer and HeI emission (indicative of a shell phase) superposed on a B2 IV spectrum with a substantial brightness increase of 2m and the sharp turn-on of HeII 686 at the peak. Significant radial velocity changes have been detected but they show no correlation with the 16.6 day period. IUE spectra during a subsequent outburst show very strong and broad (5000 km s–1) emission from C IV 1550 and HeII 1640. This behaviour is compared with other galactic transients and shell/Be stars.  相似文献   

5.
A 13 hr observation of 2S0142+61 on 1984 August 27 by EXOSAT shows the X-ray flux of 2S0142+61 to be modulated with a period of 1456+/-6 s. The 1–10 keV spectrum is two component with a 0.7 keV thermal and 0.0 energy index power law, with 30% of the total luminosity in the thermal component. The spectrum is absorbed by 1 × 1022 H cm-2. Only the hard component is pulsed with a 3 to 10 keV peak to mean amplitude of 35%. Below 2 keV the modulation is less than a few percent. The total 1–10 keV luminosity is 3.5 × 1032 erg s-1 for a distance of 100 pc. Possible optical counterparts are discussed.  相似文献   

6.
In the past several years, X-ray observations of the Sun made from rockets and satellites have demonstrated the existence of high temperature (20 × 106 – 100 × 106 K), low density plasmas associated with solar flare phenomena. In the hard X-ray range ( < 1 ), spectra of the flaring plasma have been obtained using proportional and scintillation counter detectors. It is possible from these data to determine the evolution of the hard X-ray flare spectrum as the burst progresses; and by assuming either a non-thermal or thermal (Maxwellian) electron distribution function, characteristic plasma parameters such as emission measure and temperature (for a thermal interpretation) can be determined. Thermal interpretations of hard X-ray data require temperatures of 100 × 106 K.In contrast, the soft X-ray flare spectrum (1 <<30 ) exhibits line emission from hydrogen-like and helium-like ions, e.g. Ne, Mg, Al, Si,... Fe, that indicates electron energies more characteristic of temperatures of 20 × 106 K. Furthermore, line intensity ratios obtained during the course of an event show that the flare plasma can only be described satisfactorily by assuming a source composed of several different temperature regions; and that the emission measures and temperatures of these regions appear to change as the flare evolves. Temperatures are determined from line ratios of hydrogen-like to helium-like ions for a number of different elements, e.g., S, Si, and Mg, and from the slope of the X-ray continuum which is assumed to be due to free-free and free-bound emission. There is no obvious indication in soft X-ray flare spectra of non-thermal processes, although accurate continuum measurements are difficult with the data obtained to date because of higher order diffraction effects due to the use of crystal spectrometers.Soft X-ray flare spectra also show satellite lines of the hydrogen-like and helium-like ions, notably the 1s 22s 2 S-1s2s2p 2 P transition of the lithium-like ion, and support the contention that in low density plasmas these lines are formed by dielectronic recombination to the helium-like ion. Also, series of allowed transitions of hydrogen-like and helium-like ions are strong, e.g., the Lyman series of S up to Lyman-, and ratios of the higher member lines to the Lyman- line can be compared with theoretical calculations of the relative line strengths obtained by assuming various processes of line formation.This review will discuss the X-ray spectrum of solar flares from 250 keV to 0.4 keV, but will be primarily concerned with the soft X-ray spectrum and the interpretation of emission lines and continuum features that lie in this spectral range.  相似文献   

7.
In this paper we review the possible mechanisms for production of non-thermal electrons which are responsible for the observed non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We first give a brief review of acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We also outline how the effects of the turbulence can be accounted for. Using a generic model for turbulence and acceleration, we then consider two scenarios for production of non-thermal radiation. The first is motivated by the possibility that hard X-ray emission is due to non-thermal Bremsstrahlung by nonrelativistic particles and attempts to produce non-thermal tails by accelerating the electrons from the background plasma with an initial Maxwellian distribution. For acceleration rates smaller than the Coulomb energy loss rate, the effect of energising the plasma is to primarily heat the plasma with little sign of a distinct non-thermal tail. Such tails are discernible only for acceleration rates comparable or larger than the Coulomb loss rate. However, these tails are accompanied by significant heating and they are present for a short time of <106 years, which is also the time that the tail will be thermalised. A longer period of acceleration at such rates will result in a runaway situation with most particles being accelerated to very high energies. These more exact treatments confirm the difficulty with this model, first pointed out by Petrosian (Astrophys. J. 557:560, 2001). Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation, for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion years.  相似文献   

8.
EXOSAT observed LMC X-4 on November 17/19, 1983 for one 1.4 day binary period during the high state of the 30.5 day cycle. An eclipse with sharp ingress and slow egress was detected with an eclipse angle of 27.1±1.0 dgr. In the medium energy experiment the source showed a hard power law spectrum. Outside eclipse the source was remarkably constant and only one flare was detected on November 17 at 19 UT lasting for about 1 h. The energy spectrum of the source softens considerably during that time and shows an emission line of cold iron. 13.5 sec pulsations are strongly present during the flare and have also been detected during the quiescent period and during several 1 min flares in another EXOSAT LMC X-4 observation on November 22, 1983. A pulse delay time analysis results in the determination of the pulse period (13.5019±0.0002) s and of the semimajor axis of the orbit of the X-ray star (26.0±0.6) It-sec. These results, together with other available information on LMC X-4, allowed to improve the binary parameters. The mass of the neutron star is found to be 1.34 ±0.44 0.48 Mo (95% confidence errors).  相似文献   

9.
he burst alert telescope (BAT) is one of three instruments on the Swift MIDEX spacecraft to study gamma-ray bursts (GRBs). The BAT first detects the GRB and localizes the burst direction to an accuracy of 1–4 arcmin within 20 s after the start of the event. The GRB trigger initiates an autonomous spacecraft slew to point the two narrow field-of-view (FOV) instruments at the burst location within 20–70 s so to make follow-up X-ray and optical observations. The BAT is a wide-FOV, coded-aperture instrument with a CdZnTe detector plane. The detector plane is composed of 32,768 pieces of CdZnTe (4×4×2 mm), and the coded-aperture mask is composed of ∼52,000 pieces of lead (5×5×1 mm) with a 1-m separation between mask and detector plane. The BAT operates over the 15–150 keV energy range with ∼7 keV resolution, a sensitivity of ∼10−8 erg s−1 cm−2, and a 1.4 sr (half-coded) FOV. We expect to detect > 100 GRBs/year for a 2-year mission. The BAT also performs an all-sky hard X-ray survey with a sensitivity of ∼2 m Crab (systematic limit) and it serves as a hard X-ray transient monitor.  相似文献   

10.
The ESA satellite COS-B viewed the Cyg-X region 7 times between November 1975 and March 1982. A search for periodic gamma-ray emission (E > 70 MeV) from Cyg X-3 at the characteristic 4.8 h period did not reveal the source. Combining all observations, the 2 upperlimit (E > 70 MeV) on the flux for the phase interval in which X-ray emission has been detected is 1.0 × 10-6 ph cm-2 s-1 and for the phase intervals in which ultra-high-energy (E 500 GeV) gamma-ray emission has been reported 1.0 × 10-7 ph cm-2 s-1. This is about one and two orders of magnitude, repectively, below the flux reported earlier by the SAS-2 team. A comparison of the spatial gamma-ray distribution in the Cyg-X region measured by SAS-2 and COS-B with the total-interstellar-gas distribution leads to the conclusion that in both cases, COS-B and SAS-2, no source has been detected at the position of Cyg X-3 in addition to the diffuse gamma-ray emission expected from the total-gas distribution.The Caravane Collaboration for the COS-B satellite: Laboratory for Space Research Leiden, Leiden, The Netherlands Istituto di Fisica Cosmica del CNR, Milano, Italy Istituto di Fisica Cosmica e Informatica del CNR, Palermo, Italy Max Planck Institut für Physik und Astrophysik, Institut für Extraterrestrische Physik, Garching-bei-München, Germany Service d'Astrophysique, Centre d'Etudes Nucléaires de Saclay, France Space Science Department of the European Space Agency, ESTEC, Noordwijk, The Netherlands.  相似文献   

11.
The local bubble     
Recently, observations with the rosat PSPC instrument and the spectrometers onboard the euve satellite have given new detailed information on the structure and physical conditions of the Local Bubble. From the early rocket experiments, and in particular from the WISCONSIN Survey, the existence of a diffuse hot gas in the vicinity of the solar system, extending out to about 100 pc, has been inferred in order to explain the emission below 0.3 keV. The higher angular resolution and sensitivity of rosat made it possible to use diffuse neutral clouds as targets for shadowing the soft X-ray background. Thus, in some directions, more than half of the flux in the 0.25 keV band appears to come from outside the Local Bubble. Further, measurements of the diffuse EUV in the LISM, show surprisingly few emission lines. These findings are in conflict with the standard LHB model, which assumes a local hot (T 106 K) plasma in CIE. Model calculations, based on the non-equilibrium cooling of an expanding plasma, show a promising way of reconciling all available observations. Thus the present temperature within the LB may be as low as 4 × 104 K and its number density as large as 2 × 10–2 cm –3, giving a total pressure that is roughly in agreement with the Local Cloud.Abbreviations CIE collisional ionization equilibrium - ISM Interstellar Medium - LHB Local Hot Bubble - LB Local Bubble - LISM Local ISM - SB superbubble - SXR soft X-ray - SXRB SXR Background - VLISM Very Local ISM Heisenberg Fellow  相似文献   

12.
We report the results of a 1.4 104s observation of the region of 4U 1323-62 with the EXOSAT ME. The source has a flux of 7–8 10-11 erg/cm2s (2–10 keV) and a power-law spectrum with 1.1 < < 1.8. During our observation, the source showed a symmetric 60% dip in its X-ray flux of R~1 hr. The spectrum hardens during the dip. Inside the dip we observed an X-ray burst with a 2–10 keV peak flux of 7 10-10 erg/cm2s. The burst spectrum is black-body, and shows evidence of cooling during the burst decay. The discovery of a burst from 4U 1323-62 settles the classification of the source; the observation of a dip suggests that we may be able to measure its orbital period in the near future.  相似文献   

13.
14.
The X-ray properties of the supernova remnant G 29.7-0.3 are discussed based on spectral data from the EXOSAT satellite. In the 2 to 10 keV range a featureless power-law spectrum is obtained, the best-fit parameters being: energy spectral index =-0.77, hydrogen column density on the line of sight NH=2.3.1022 cm–2. The incident X-ray flux from the source is (3.6±0.1) 1011 erg cm–2 s–1 in the 2 to 10 keV range corresponding to an intrinsic luminosity of about 2. 1036 erg s–1 for a distance of 19 kpc. The source was not seen with the imaging instrument thus constraining the hydrogen column density to be NH=(3.3 ±0.3) 1022 cm–2 and the energy spectral index =1.0±0.15. This new observation is consistent with emission by a synchroton nebula presumably fed by an active pulsar. An upper limit of 1.5% for the pulsed fraction in the range of periods 32ms to 104 s has been obtained.  相似文献   

15.
Recent observations of the thermal emission of Mercury at microwave and infrared frequencies now permit a determination of the thermal and electrical properties of the subsurface of the planet. Radar and optical measurements show that the rotation period is 58.65 days, 2/3 of the orbital period. Several negative spectrographic searches verify that the effects of an atmosphere need not be taken into account in computing surface and subsurface temperatures. The observed thermal emission from the planet can then be interpreted from models similar to those developed for study of the Moon but adapted to the peculiar diurnal insolation of Mercury. The observations of Epstein et al. (1970) at 3.3 mm and of Klein (1970a) at 3.75 cm, when interpreted together with recent laboratory measurements of thermal properties of terrestrial and lunar rock powders, indicate that the ratio of electrical to thermal skin depth is 0.9 ± 0.3 times the wavelength in centimeters. Further results of this analysis of the subsurface are: Density = 1.5 ± 0.4 g cm-3; Electric loss tangent = 0.009 ± 0.004; Inverse thermal inertia = (15 ± 6) × 10–6 erg-1 cm2 s1/2 K; Equatorial midnight temperature = 100 ± 15K.The microwave data generally conform to the predictions of the thermophysical models of Mercury developed by Morrison and Sagan (1967), including a suggestion that variations having mean periods of 50 days and 35 days are present in addition to the classical phase effect with period about 116 days. The time-averaged microwave temperature of the planet appears to increase 25 % from millimeter to decimeter wavelengths; this increase suggests that radiation plays an important role in the transport of heat in the subsurface. All of the conclusions of this review indicate that the thermophysical behavior of Mercury closely approximates that expected for the Moon, were it placed in the orbit of Mercury.  相似文献   

16.
We present the results of the spectral and timing analysis of an observation of GX9+1/4U1758-205 performed with the Medium Energy Experiment aboard EXOSAT. During our observation the source flux varied irregularly in time scales from minutes to hours. No periodic emission in the period range from 16 msec to 2000 sec was found with an upper limit of around 1% (3 ) for the pulsed fraction. The hardness ratio shows a correlated change with the flux intensity (Sco X-1 behaviour). The spectrum could be fitted by a double component model, a black body component (kT=1.16–1.26 keV) together with a thermal bremsstrahlung law (kT=13–15keV). The black-body temperature-black-body flux relation follows a Stefan Boltzmann law with RBB=15.3 km*D/10 kpc. No iron line was detected. The upper limit for the line equivalent width of a 6.7 keV iron emission line is 40 eV (1). The X-ray spectral behaviour of GX9+1 indicates, that this source belongs to the class of Low-Mass X-ray Binaries (LMXB).  相似文献   

17.
A new X-ray image of the galactic plane has been produced using the 45 arcmin square field of view of the Medium Energy Instrument on EXOSAT. This image shows a total of 64 sources including 18 new ones which include the first observation of persistent emission from the globular cluster bursters Terzan 1 and Terzan 5. The most important discovery from this image is a 2° wide ridge of diffuse emission symmetrical about the plane and extending from the galactic centre to 1=±40°. The spectrum of this emission appears to be hard ( 1.2) with no significant absorption.  相似文献   

18.
Smith  A.  Zimmermann  H. -U. 《Space Science Reviews》1985,40(3-4):487-493
Presented here are Exosat LE1-CMA images of fields in the Vela SNR. Soft X-ray emission is observed in the north of the remnant indicating a filamentry structure. No X-ray emission was seen in two fields to the west and south-west which have optical filaments but were not studied by Einstein. The Vela pulsar is observed and is significantly broader than a point source indicating the presence of a small nebula as seen by the Einstein HRI. The flux seen from the point source in the CMA is consistent with blackbody radiation from a 106 degree neutron star of approx. 10 km radius. A bright ridge of emission is seen north of the pulsar which may be part of the extended synchroton nebula seen in the 2–10 keV range.  相似文献   

19.
The instrument configuration and performance characteristics of the X-ray imaging telescopes on EXOSAT are described. The instrument comprises two fully independent Wolter I imaging telescopes. Each telescope can be used in either of two principal modes: (i) an imaging mode with either a position sensitive proportional counter or a channel multiplier array plate in the focal plane, (ii) a spectrometer mode which features a 500 lines/mm and/or a 1000 lines/mm transmission grating as dispersive element.Preliminary results from the calibration of the fully integrated experiment indicate an ultimate angular resolution of 8.5 arc sec full width at half maximum or 17.5 arc sec half-power beam width. The ultimate wavelength resolution in the spectrometer mode ranges from 1Å for wavelengths below 50Å, to 5Å at wavelengths near 300Å.A method for estimating the telescope performance is given which reasonably accounts for the influence of the X-ray source spectrum and the degree of interstellar absorption on the counting statistics.A comparison between EXOSAT and the EINSTEIN telescope in terms of band width/resolution and minimum source detectability shows an enhanced potential for EXOSAT relative to EINSTEIN for sources with T 107K and low column densities (< 4 × 1020cm–2) and a reduced potential for sources with hard, or heavily cut-off, spectra.  相似文献   

20.
The observations of X-ray Type II bursts from the low-mass X-ray binary MXB 1730-335 can be explained by a particular form of magnetic gating in the presence of steady external accretion. The requirements are a strong magnetic field of the neutron star (7×1011–2×1012 gauss at the surface), rotational symmetry and alignment of the field axis with the axis of a steadily accreting disk to within 6°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号