首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   0篇
  国内免费   2篇
航空   47篇
航天技术   22篇
综合类   1篇
航天   48篇
  2022年   1篇
  2021年   2篇
  2018年   4篇
  2017年   5篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   8篇
  2012年   6篇
  2011年   9篇
  2010年   7篇
  2009年   7篇
  2008年   8篇
  2007年   9篇
  2006年   10篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2000年   3篇
  1997年   3篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有118条查询结果,搜索用时 265 毫秒
81.
82.
Empirical models for the plasma densities in the inner magnetosphere, including plasmasphere and polar magnetosphere, have been in the past derived from in situ measurements. Such empirical models, however, are still in their initial phase compared to magnetospheric magnetic field models. Recent studies using data from CRRES, Polar, and Image have significantly improved empirical models for inner-magnetospheric plasma and mass densities. Comprehensive electric field models in the magnetosphere have been developed using radar and in situ observations at low altitude orbits. To use these models at high altitudes one needs to rely strongly on the assumption of equipotential magnetic field lines. Direct measurements of the electric field by the Cluster mission have been used to derive an equatorial electric field model in which reliance on the equipotential assumption is less. In this paper we review the recent progress in developing empirical models of plasma densities and electric fields in the inner magnetosphere with emphasis on the achievements from the Image and Cluster missions. Recent results from other satellites are also discussed when they are relevant.  相似文献   
83.
To achieve sustainable, healthy closed ecological systems requires solutions to challenges of closing the water cycle – recycling wastewater/irrigation water/soil medium leachate and evaporated water and supplying water of required quality as needed for different needs within the facility. Engineering Biosphere 2, the first multi-biome closed ecological system within a total airtight footprint of 12,700 m2 with a combined volume of 200,000 m3 with a total water capacity of some 6 × 106 L of water was especially challenging because it included human inhabitants, their agricultural and technical systems, as well as five analogue ecosystems ranging from rainforest to desert, freshwater ecologies to saltwater systems like mangrove and mini-ocean coral reef ecosystems. By contrast, the Laboratory Biosphere – a small (40 m3 volume) soil-based plant growth facility with a footprint of 15 m2 – is a very simplified system, but with similar challenges re salinity management and provision of water quality suitable for plant growth. In Biosphere 2, water needs included supplying potable water for people and domestic animals, irrigation water for a wide variety of food crops, and recycling and recovering soil nutrients from wastewater. In the wilderness biomes, providing adequately low salinity freshwater terrestrial ecosystems and maintaining appropriate salinity and pH in aquatic/marine ecosystems were challenges. The largest reservoirs in Biosphere 2 were the ocean/marsh with some 4 × 106 L, soil with 1 to 2 × 106 l, primary storage tank with 0 to 8 × 105 L and storage tanks for condensate and soil leachate collection and mixing tanks with a capacity of 1.6 × 105 L to supply irrigation for farm and wilderness ecosystems. Other reservoirs were far smaller – humidity in the atmosphere (2 × 103 L), streams in the rainforest and savannah, and seasonal pools in the desert were orders of magnitude smaller (8 × 104 L). Key technologies included condensation from humidity in the air handlers and from the glass space frame to produce high quality freshwater, wastewater treatment with constructed wetlands and desalination through reverse osmosis and flash evaporation were key to recycling water with appropriate quality throughout the Biosphere 2 facility. Wastewater from all human uses and the domestic animals in Biosphere 2 was treated and recycled through a series of constructed wetlands, which had hydraulic loading of 0.9–1.1 m3 day−1 (240–290 gal d−1). Plant production in the wetland treatment system produced 1210 kg dry weight of emergent and floating aquatic plant wetland which was used as fodder for the domestic animals while remaining nutrients/water was reused as part of the agricultural irrigation supply. There were pools of water with recycling times of days to weeks and others with far longer cycling times within Biosphere 2. By contrast, the Laboratory Biosphere with a total water reservoir of less than 500 L has far quicker cycling rapidity: for example, atmospheric residence time for water vapor was 5–20 min in the Laboratory Biosphere vs. 1–4 h in Biosphere 2, as compared with 9 days in the Earth’s biosphere. Just as in Biosphere 2, humidity in the Laboratory Biosphere amounts to a very small reservoir of water. The amount of water passing through the air in the course of a 12-h operational day is two orders of magnitude greater than the amount stored in the air. Thus, evaporation and condensation collection are vital parts of the recycle system just as in Biosphere 2. The water cycle and sustainable water recycling in closed ecological systems presents problems requiring further research – such as how to control buildup of salinity in materially closed ecosystems and effective ways to retain nutrients in optimal quantity and useable form for plant growth. These issues are common to all closed ecological systems of whatever size, including planet Earth’s biosphere and are relevant to a global environment facing increasing water shortages while maintaining water quality for human and ecosystem health. Modular biospheres offer a test bed where technical methods of resolving these problems can be tested for feasibility.  相似文献   
84.
Aymeric Spiga  Don Banfield  Nicholas A. Teanby  François Forget  Antoine Lucas  Balthasar Kenda  Jose Antonio Rodriguez Manfredi  Rudolf Widmer-Schnidrig  Naomi Murdoch  Mark T. Lemmon  Raphaël F. Garcia  Léo Martire  Özgür Karatekin  Sébastien Le Maistre  Bart Van Hove  Véronique Dehant  Philippe Lognonné  Nils Mueller  Ralph Lorenz  David Mimoun  Sébastien Rodriguez  Éric Beucler  Ingrid Daubar  Matthew P. Golombek  Tanguy Bertrand  Yasuhiro Nishikawa  Ehouarn Millour  Lucie Rolland  Quentin Brissaud  Taichi Kawamura  Antoine Mocquet  Roland Martin  John Clinton  Éléonore Stutzmann  Tilman Spohn  Suzanne Smrekar  William B. Banerdt 《Space Science Reviews》2018,214(7):109
In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars.  相似文献   
85.
Space Science Reviews - Modern observatories have revealed the ubiquitous presence of magnetohydrodynamic waves in the solar corona. The propagating waves (in contrast to the standing waves) are...  相似文献   
86.
Laboratory experiments that produced tholins in a simulated Titan atmosphere were conducted. We report the first systematic analyses of these compounds using Fourier-transform ion cyclotron resonance mass spectrometry. The findings suggest surprising simplicity and nonrandomness in the mass distribution and regularity in species clusters. The degree of unsaturation generally increased with increasing molecular weight in a predictable fashion, and nitrogen is proposed as the dominant carrier of unsaturation. In detected compounds with a general formula of C(x)H(y)N(z), the carbon to nitrogen ratio (x/z) varied only slightly within a narrow limit, and decreased with increasing molecular weights. These compounds are of potential prebiotic interest since they sediment to the surface of Titan, and would dissolve readily in transient aqueous pools that might be generated from time to time by impacts and volcanic  相似文献   
87.
Hall  Doyle T.  Matney  Mark J. 《Space Debris》2000,2(3):161-198
We present a new derivation of the probability of collisions between spherical satellites occupying Keplerian orbits. The equations follow from the central concept of the instantaneous collision rate, an expression that describes the occurrence of collisions by using a Dirac -function. The derivation proceeds by showing how this instantaneous collision rate can be averaged over orbital mean anomaly angles and, additionally, over orbital precession angles to generate expressions appropriate for intermediate and long time scales. Collision rates averaged over mean anomalies tend to be non-zero during relatively brief collision seasons, when the peak collision probability may exceed the long-term average by several orders of magnitude. Derived precession-angle averages have a functional form similar but not identical to the collision probability expression derived using the spatial density approach of Kessler (Icarus, 48: 39–48, 1981), and the two methods have been found to yield numerical results to within 1% for all cases examined.  相似文献   
88.
Due to the long lead time and great expense of traditional sample return mission plans to Mars or other astronomical bodies, there is a need for a new and innovative way to return materials, potentially at a lower cost. The Rapid Impactor Sample Return (RISR) mission is one such proposal. The general mission scenario involves a single pass of Mars, a Martian moon or an asteroid at high speeds (7 km/s), with the sample return vehicle skimming just 1 or 2 m above a high point (such as a top ridge on Olympus Mons on Mars) and releasing an impactor. The impactor strikes the ground, throwing up debris. The debris with roughly the same forward velocity will be captured by the sample return vehicle and returned to Earth. There is no delay or orbit in the vicinity of Mars or the asteroid: RISR is a one-pass mission. This paper discusses some of the details of the proposal. Calculations are presented that address the question of how much material can be recovered with this technique. There are concerns about the effect of Mars tenuous atmosphere. However, it will be noted that such issues do not occur for RISR style missions to Phobos, Deimos, or asteroids and Near Earth Objects (NEOs). Recent test results in the missile defense community (IFTs 6–8 in 2001, 2002) have scored direct hits at better than 1 m accuracy with closing velocities of 7.6 km/s, giving the belief that accuracy and sensing issues are developed to a point that the RISR mission scenario is feasible.  相似文献   
89.
The Mercury Dual Imaging System on the MESSENGER Spacecraft   总被引:1,自引:0,他引:1  
The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft will provide critical measurements tracing Mercury’s origin and evolution. MDIS consists of a monochrome narrow-angle camera (NAC) and a multispectral wide-angle camera (WAC). The NAC is a 1.5° field-of-view (FOV) off-axis reflector, coaligned with the WAC, a four-element refractor with a 10.5° FOV and 12-color filter wheel. The focal plane electronics of each camera are identical and use a 1,024×1,024 Atmel (Thomson) TH7888A charge-coupled device detector. Only one camera operates at a time, allowing them to share a common set of control electronics. The NAC and the WAC are mounted on a pivoting platform that provides a 90° field-of-regard, extending 40° sunward and 50° anti-sunward from the spacecraft +Z-axis—the boresight direction of most of MESSENGER’s instruments. Onboard data compression provides capabilities for pixel binning, remapping of 12-bit data into 8 bits, and lossless or lossy compression. MDIS will acquire four main data sets at Mercury during three flybys and the two-Mercury-solar-day nominal mission: a monochrome global image mosaic at near-zero emission angles and moderate incidence angles, a stereo-complement map at off-nadir geometry and near-identical lighting, multicolor images at low incidence angles, and targeted high-resolution images of key surface features. These data will be used to construct a global image base map, a digital terrain model, global maps of color properties, and mosaics of high-resolution image strips. Analysis of these data will provide information on Mercury’s impact history, tectonic processes, the composition and emplacement history of volcanic materials, and the thickness distribution and compositional variations of crustal materials. This paper summarizes MDIS’s science objectives and technical design, including the common payload design of the MDIS data processing units, as well as detailed results from ground and early flight calibrations and plans for Mercury image products to be generated from MDIS data.  相似文献   
90.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Radio Frequency (RF) Telecommunications Subsystem is used to send commands to the spacecraft, transmit information on the state of the spacecraft and science-related observations, and assist in navigating the spacecraft to and in orbit about Mercury by providing precise observations of the spacecraft’s Doppler velocity and range in the line of sight to Earth. The RF signal is transmitted and received at X-band frequencies (7.2 GHz uplink, 8.4 GHz downlink) by the NASA Deep Space Network. The tracking data from MESSENGER will contribute significantly to achieving the mission’s geophysics objectives. The RF subsystem, as the radio science instrument, will help determine Mercury’s gravitational field and, in conjunction with the Mercury Laser Altimeter instrument, help determine the topography of the planet. Further analysis of the data will improve the knowledge of the planet’s orbital ephemeris and rotation state. The rotational state determination includes refined measurements of the obliquity and forced physical libration, which are necessary to characterize Mercury’s core state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号