首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
航空   17篇
航天技术   8篇
综合类   1篇
航天   7篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   3篇
  2011年   5篇
  2010年   3篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1997年   3篇
  1985年   1篇
  1979年   1篇
  1967年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
Radio tracking of interplanetary probes is an important tool for navigation purposes as well as for testing the laws of physics or exploring planetary environments. The addition of an accelerometer on board a spacecraft provides orbit determination specialists and physicists with an additional observable of great interest: it measures the value of the non-gravitational acceleration acting on the spacecraft, i.e. the departure of the probe from geodesic motion.  相似文献   
12.
Analytical studies of reconnection have, for the most part, been confined to steady and uniform current sheet geometries. In contrast to these implifications, natural phenomena associated with the presence of current sheets indicate highly non-uniform structure and time-varying behaviour. Examples include the violent outbursts of energy on the Sun known as solar flares, and magnetospheric phenomena such as flux transfer events, plasmoids, and auroral activity. Unlike the theoretical models, reconnection therefore occurs in a highly dynamic and structured plasma environment. In this article we review the mathematical tools and techniques which are available to formulate models capable of describing the effects of reconnection in such situations. We confine attention to variants of the reconnection model first discussed by Petschek in the 1960s, in view of its successful application in predicting and interpreting phenomena in the terrestrial magnetosphere. The analysis of Petschek-type reconnection is based on the equations of ideal magnetohydrodynamics (MHD), which describe the large-scale behaviour of the magnetic field and plasma flow outside the diffusion region, which we determine as a localised part of the current sheet in which reconnection is initiated. The approach we adopt here is to transform the MHD equations into a Lagrangian or so-called 'frozen-in' coordinate system. In this coordinate system, the equation of motion transforms into a set of coupled nonlinear equations, in which the presence of inhomogeneous magnetic fields and/or plasma flows gives rise to a term similar to that which appears in the study of the ordinary string equation in a non-homogeneous medium. As demonstrated here, this approach not only clarifies and highlights the effects of such non-uniformities, it also simplifies the solution of the original set of MHD equations. In particular, this is true for those types of problem in which the total pressure can be considered as a known quantity from the outset. To illustrate the method, we solve several 2D problems involving magnetic field and flow non-uniformities: reconnection in a stagnation-point flow geometry with antiparallel magnetic fields; reconnection in a Y-type magnetic field geometry with and without velocity shear across the current sheet; and reconnection in a force-free magnetic field geometry with field lines of the form xy = const. These case examples, chosen for their tractability, each incorporate some aspects of the field and flow geomtries encountered in solar-terrestrial applications, and they provide a starting point for further analytical as well as numerical studies of reconnection.  相似文献   
13.
THE CLUSTER ION SPECTROMETRY (CIS) EXPERIMENT   总被引:5,自引:0,他引:5  
The Cluster Ion Spectrometry (CIS) experiment is a comprehensive ionic plasma spectrometry package on-board the four Cluster spacecraft capable of obtaining full three-dimensional ion distributions with good time resolution (one spacecraft spin) with mass per charge composition determination. The requirements to cover the scientific objectives cannot be met with a single instrument. The CIS package therefore consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion COmposition and DIstribution Function analyser (CODIF), plus a sophisticated dual-processor-based instrument-control and Data-Processing System (DPS), which permits extensive on-board data-processing. Both analysers use symmetric optics resulting in continuous, uniform, and well-characterised phase space coverage. CODIF measures the distributions of the major ions (H+, He+, He++, and O+) with energies from ~0 to 40 keV/e with medium (22.5°) angular resolution and two different sensitivities. HIA does not offer mass resolution but, also having two different sensitivities, increases the dynamic range, and has an angular resolution capability (5.6° × 5.6°) adequate for ion-beam and solar-wind measurements.  相似文献   
14.
连续爆震波发动机(CDWE)可以弱化一般爆震发动机(PDE)对环境条件的要求,尤其是初始条件要求弱化简化了发动机结构。为了探讨CDWE用于空间发射器的可行性,MBDA与Lavrentiev学院联合进行了一些试验,研究了其工作模式和一些关键点。结果发现:这种发动机在非常小的装置中可提供可观的推力(275daN,条件:直径50mm,长100mm,航空煤油加氧气)。如果采用扩张型喷管,推力还可能增加。在现有尺寸下,插入式或气动锥喷管似乎是最佳设计,在同一流量下,发动机的矢量能力是解决姿态控制的一个方法。热流量非常大,但主要集中在喷射壁面,这一点将有助于在燃烧室内气化喷入的液体燃料。另外,做了初步试验来评估C/SiC复合材料在转动爆震波非常恶劣的机械环境下的性能。在这些研究以外,MBDA还设计了大尺寸地面实验装置来研究使用LH2/LOx混合物的连续爆震波发动机的所有相关问题。作为大尺寸研发的第一步,小尺寸的演示在2010年春季进行。  相似文献   
15.
This paper analyzes superconducting (SC) coils technology to improve satellite electric propulsion. SC magnets can generate very high magnetic fields with extremely low ohmic losses, low electric power and PCU weight. Moreover, the weight of SC magnet coils is quite low compared with conventional or permanent magnets capable of producing the same field strength. For instance, to obtain a 0.4 T magnetic field strength, typical of applied field magnetoplasmadynamic thrusters (AF-MPD), based on the Lorentz force, and with thrust in the range of 1 N, this paper shows that only a 40 g coil SC weight is needed, whereas an equivalent field copper winding would weigh about 36 kg. Using SC technology it is shown that the limited magnetic induction provided by a permanent magnet may be raised and also that it is possible to obtain high magnetic fields (of order of several Tesla) with fewer turns, drastically reducing coil volume, weight and complexity compared to conventional winding.

Superconductivity at low temperature (LTSC) requires liquid helium at 4.2 K to produce very high current densities: the thermal analysis in this paper shows that, depending on satellite and thruster, high temperature superconductors (HTSC) wires are sometimes better than LTSC because these can support lower current densities but with a critical superconductivity temperature higher than for LHe, requiring LN2 at 77 K, easier to maintain during the whole mission.

Finally, this paper shows that implementing SC cryogenic technology on a satellite can be achieved with current active coolers technology.  相似文献   

16.
17.
The Gravity Advanced Package is an instrument composed of an electrostatic accelerometer called MicroSTAR and a rotating platform called Bias Rejection System. It aims at measuring with no bias the non-gravitational acceleration of a spacecraft. It is envisioned to be embarked on an interplanetary spacecraft as a tool to test the laws of gravitation.  相似文献   
18.
Various models have been proposed to interpret the anomalous Pioneer Doppler data. We present in this paper a simulation tool aiming at determining signatures that could be searched in the data reduction process in order to discriminate between these different explanations. We discuss preliminary results on the seasonally modulated anomalies and compare two interpretations corresponding to a constant anomalous acceleration on one hand, to an anomalous curvature in the second sector of the gravity law on the other hand. Though the second sector interpretation could naturally induce large modulated anomalies, the adjustment of the initial conditions partly compensate these modulations and thus produces a signature resembling that of a constant acceleration. The difference between the predictions of the two interpretations is in fact close to the rms level of the residuals after the data analysis.  相似文献   
19.
The geomagnetic field, modified by the solar wind, determines the shape, area and location of polar caps and auroral zones, among other magnetosphere and upper atmosphere characteristics. Since the field varies greatly with time it is of interest to analyze polar caps and auroral zones variations linked to magnetic field variations of intensity and pattern. Polar caps and auroral zones locations and areas for various single harmonic axial field configurations are obtained analytically assuming a simple magnetopause model. As the axial degree n increases, the polar caps and auroral zones total number, given by n + 1 and 2n respectively, also increase. However, their total areas decrease from a larger value in the case of an axial dipole to a minimum for an axial octupole (n = 3), and then increase for increasing degrees. The increasing rate is much higher in the auroral zones case to the point that it exceeds the dipolar value at n = 5 while in the polar caps case this occurs at n = 8. The absolute latitudes of the auroral zones and polar caps that reside around the geographical poles increase with axial degree. Our results represent an end-member case of the evolution of auroral zones and polar caps during polarity reversals if the transition involves axial dipole energy cascade to higher axial degrees. Evidence for such an energy transfer is found in the historical record of the geomagnetic secular variation.  相似文献   
20.
The state-of-the-art electrostatic accelerometers (EA) used for the retrieval of non-gravitational forces acting on a satellite constitute a core component of every dedicated gravity field mission. However, due to their difficult-to-control thermal drift in the low observation frequencies, they are also one of the most limiting factors of the achievable performance of gravity recovery. Recently, a hybrid accelerometer consisting of a regular EA and a novel cold atom interferometer (CAI) that features a time-invariant observation stability and constantly recalibrates the EA has been developed in order to remedy this major drawback. In this paper we aim to assess the value of the hybrid accelerometer for gravity field retrieval in the context of GRACE-type and Bender-type missions by means of numerical closed-loop simulations where possible noise specifications of the novel instrument are considered and different components of the Earth’s gravity field signal are added subsequently. It is shown that the quality of the gravity field solutions is mainly dependent on the CAI’s measurement accuracy. While a low CAI performance (10?8 to 10?9?m/s2/Hz1/2) does not lead to any gains compared to a stand-alone EA, a sufficiently high one (10?11?m/s2/Hz1/2) may improve the retrieval performance by over one order of magnitude. We also show that improvements which are limited to low-frequency observations may even propagate into high spherical harmonic degrees. Further, the accelerometer performance seems to play a less prominent role if the overall observation geometry is improved as it is the case for a Bender-type mission. The impact of the accelerometer measurements diminishes further when temporal variations of the gravity field are introduced, pointing out the need for proper de-aliasing techniques. An additional study reveals that the hybrid accelerometer is – contrary to a stand-alone EA – widely unaffected by scale factor instabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号