首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   0篇
  国内免费   1篇
航空   36篇
航天技术   17篇
综合类   2篇
航天   56篇
  2021年   5篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   3篇
  2012年   2篇
  2011年   10篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   10篇
  2006年   4篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1993年   1篇
  1992年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1968年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
71.
The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography--mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gammaproteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.  相似文献   
72.
MUPUS, the multi purpose sensor package onboard the Rosetta lander Philae, will measure the energy balance and the physical parameters in the near-surface layers – up to about 30 cm depth- of the nucleus of Rosetta’s target comet Churyumov-Gerasimenko. Moreover it will monitor changes in these parameters over time as the comet approaches the sun. Among the parameters studied are the density, the porosity, cohesion, the thermal diffusivity and conductivity, and temperature. The data should increase our knowledge of how comets work, and how the coma gases form. The data may also be used to constrain the microstructure of the nucleus material. Changes with time of physical properties will reveal timescales and possibly the nature of processes that modify the material close to the surface. Thereby, the data will indicate how pristine cometary matter sampled and analysed by other experiments on Philae really is.  相似文献   
73.
This paper provides theoretical underpinnings for further discussions on the future direction of the international aerospace community in an era of globalization. It points out that changes in the international distribution of resources are placing strains on the basic operating principles of the current technology control regime, but at this stage the social groupings do not appear to be in place to overturn the current paradigm. Instead, this paper suggests that current operating principles could be modified in order for the current regime to keep pace with globalization. These changes would include: (1) a shift in the monitoring mechanism of the Missile Technology Control Regime (MTCR) requiring looser supervision but greater transparency; (2) greater inclusion of private industry as a stakeholder in MTCR proceedings; and (3) much more focus on the list of prescribed technologies to include only those which are most critical to the development of military missiles.  相似文献   
74.
The Near Earth Asteroid Rendezvous (NEAR) mission launched successfully on February 17, 1996 aboard a Delta II-7925. NEAR will be the first mission to orbit an asteroid and will make the first comprehensive scientific measurements of an asteroid's surface composition, geology, physical properties, and internal structure. It will orbit the unusually large near-Earth asteroid 433 Eros for about one year, at a minimum altitude of about 15 km from the surface. NEAR will also make the first reconnaissance of a C-type asteroid during its flyby of the unusual main belt asteroid 253 Mathilde. The NEAR instrument payload is: a multispectral imager (MSI), a near infrared spectrometer (NIS), an X-ray/gamma ray spectrometer (XRS/GRS), a magnetometer (MAG), and a laser rangefinder (NLR), while a radio science investigation (RS) uses the coherent X-band transponder. NEAR will improve our understanding of planetary formation processes in the early solar system and clarify the relationships between asteroids and meteorites. The Mathilde flyby will occur on June 27, 1997, and the Eros rendezvous will take place during February 1999 through February 2000.  相似文献   
75.
This paper describes the design, construction, and performance of an experimental radar, in which an electronically scanned X-band array is employed as the receiving antenna. Backscatter from targets uniformly illuminated from a separate transmitting antenna is intercepted by 128 horn antennas, unequally spaced over a nine-foot circular aperture. The received signals are processed electronically to provide a complete scan of a 30X30 degree field every ten milliseconds. Resulting target images were displayed on a cathode ray tube and recorded on 16-mm motion picture film, for varying conditions of target motion using monochromatic and frequency-modulated X-band illumination. Sequences of motion picture frames obtained from a rotating copper cone are presented, which demonstrate significant changes in the image and side-lobe interference patterns for small changes in target aspect angle. Side-lobe interference effects were reduced by integrating many antenna scans as the target rotated; a clear image of a foil letter R is presented that demonstrated this result. The main objective of this work was to test this radar technique as an approach to target recognition.  相似文献   
76.
Man's quest to get into space is hindered by major problems (e.g., system-development and capital costs, expense of putting mass into orbit, trapped-radiation belts, and environmental impact of a large increase in rocket launches). A multi-purpose low-earth-orbit system of rings circling the earth – the “LEO ARCHIPELAGOTM” – is proposed as a means of solving or bypassing many of them. A fiber-optic ring about the earth would be an initial testing and developmental stage for the Ring Systems, while providing cash-flow through a LEO-based, high-band-width, world-wide communication system. A low-earth-orbit-based space-elevator system, “Sling-on-a-RingTM”, is proposed as the crucial developmental stage of the LEO Archipelago. Being a LEO-based heavy-mass lifter, rather than earth- or GEO-based, it is much less massive and therefore less costly than other proposed space-elevators. With the advent of lower-cost, higher-mass transport to orbit, the options for further space development (e.g., space solar power, radiation, and space-debris dampers, sun shades, and permanent LEO habitation) are greatly expanded.This paper provides an update of the Sling-on-a-Ring concept in terms of new materials, potential applications, and trade-offs associated with an earlier model. The impact of Colossal Carbon Tubes, CCT, a new material with high tensile strength, extremely-low density, and other favorable properties, and other new technologies (e.g., solar-powered lasers, power beaming to near-space and earth, and thermal-control systems) on the development of associated LEO-Ring systems is also explored. The material's effect on the timeline for the system development indicates the feasibility of near-term implementation of the system (possibly within the decade). The Sling-on-a-Ring can provide a less-expensive, environment-friendly mode of access to space. This would pave the way (via eventual operation at >1000 t per day by 2050) for large scale development of space-based technologies.  相似文献   
77.
Previous research has shown that training can improve mental rotation performance and has found connections between mental and manual rotation. Here we examine how practice in mental or manual (virtual) rotation, affects performance on mental and manual rotation tasks, compared to a control condition. Experiment 1 examined improvement on a mental rotation task following practice in mental or manual rotation. Both mental and manual rotation practice led to more efficient posttest performance. Experiment 2 examined improvement on a manual rotation task. Practice in manual but not mental rotation led to improved performance. Analyses of the manual rotation trajectories revealed no evidence of strategy differences. These results suggest that manual rotation may require additional processes outside of those needed for mental rotation. In terms of training effects, manual rotation training improved both manual and mental rotation performance, whereas mental rotation only significant improved mental rotation performance.  相似文献   
78.
It has been speculated that the composition of the exosphere is related to the composition of Mercury’s crustal materials. If this relationship is true, then inferences regarding the bulk chemistry of the planet might be made from a thorough exospheric study. The most vexing of all unsolved problems is the uncertainty in the source of each component. Historically, it has been believed that H and He come primarily from the solar wind (Goldstein, B.E., et al. in J. Geophys. Res. 86:5485–5499, 1981), Na and K come from volatilized materials partitioned between Mercury’s crust and meteoritic impactors (Hunten, D.M., et al. in Mercury, pp. 562–612, 1988; Morgan, T.H., et al. in Icarus 74:156–170, 1988; Killen, R.M., et al. in Icarus 171:1–19, 2004b). The processes that eject atoms and molecules into the exosphere of Mercury are generally considered to be thermal vaporization, photon-stimulated desorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its own temporal and spatial dependence. The exosphere is strongly influenced by Mercury’s highly elliptical orbit and rapid orbital speed. As a consequence the surface undergoes large fluctuations in temperature and experiences differences of insolation with longitude. Because there is no inclination of the orbital axis, there are regions at extreme northern and southern latitudes that are never exposed to direct sunlight. These cold regions may serve as traps for exospheric constituents or for material that is brought in by exogenic sources such as comets, interplanetary dust, or solar wind, etc. The source rates are dependent not only on temperature and composition of the surface, but also on such factors as porosity, mineralogy, and space weathering. They are not independent of each other. For instance, ion impact may create crystal defects which enhance diffusion of atoms through the grain, and in turn enhance the efficiency of PSD. The impact flux and the size distribution of impactors affects regolith turnover rates (gardening) and the depth dependence of vaporization rates. Gardening serves both as a sink for material and as a source for fresh material. This is extremely important in bounding the rates of the other processes. Space weathering effects, such as the creation of needle-like structures in the regolith, will limit the ejection of atoms by such processes as PSD and ion-sputtering. Therefore, the use of laboratory rates in estimates of exospheric source rates can be helpful but also are often inaccurate if not modified appropriately. Porosity effects may reduce yields by a factor of three (Cassidy, T.A., and Johnson, R.E. in Icarus 176:499–507, 2005). The loss of all atomic species from Mercury’s exosphere other than H and He must be by non-thermal escape. The relative rates of photo-ionization, loss of photo-ions to the solar wind, entrainment of ions in the magnetosphere and direct impact of photo-ions to the surface are an area of active research. These source and loss processes will be discussed in this chapter.  相似文献   
79.
We have developed a rock cutting mechanism for in situ planetary exploration based on abrasive diamond impregnated wire. Performance characteristics of the rock cutter, including cutting rate on several rock types, cutting surface lifetime, and cut rock surface finish are presented. The rock cutter was developed as part of a broader effort to develop an in situ automated rock thin section (IS-ARTS) instrument. The objective of IS-ARTS was to develop an instrument capable of producing petrographic rock thin sections on a planetary science spacecraft. The rock cutting mechanism may also be useful to other planetary science missions with in situ instruments in which sub-sampling and rock surface preparation are necessary.  相似文献   
80.
The Coast Guard is extending the Continental United States (CONUS) LORAN-C coverage as part of the Federal Aviation Administration project to incorporate LORAN-C into the National Airspace System. The increased coverage will expand the number of airports approved for LORAN-C non-precision instrument approaches and enable direct Instrumental Flight Rules (IFR) routing by suitably equipped aircraft in and through the mid-continent region of the United States. The project will involve construction of a new LORAN-C chain which will be linked to the existing CONUS chains. In addition to the aviation benefits, the Mid-Continent LORAN-C Expansion will broaden the availability of LORAN-C positioning to a growing number of terrestrial users such as resource management, emergency response and fleet management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号