首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 93 毫秒
1.
基于X射线脉冲星的天文自主导航方法稳定、可靠、精度高,是航天器自主导航领域重要的发展方向.论文介绍了基于X射线脉冲星导航的基本原理,给出了脉冲星自主定位的滤波模型;基于扩展卡尔曼滤波导航算法,以地球同步轨道为例,分析了不同初始误差、轨道倾角、轨道偏心率以及不同脉冲星方位误差下的导航精度.仿真算例表明,在脉冲星方位误差为0.001″、脉冲到达时间测量误差为0.1μs的情况下,导航定位精度优于1km,且对初始误差不敏感;脉冲星方位精度、脉冲计时精度、轨道面位置和轨道偏心率是影响导航精度的主要因素.   相似文献   

2.
基于X射线脉冲星的天文自主导航方法稳定、可靠、精度高.是航天器自主导航领域重要的发展方向.论文介绍了基于X射线脉冲星导航的基本原理,给出了脉冲星自主定位的滤波模型;基于扩展卡尔曼滤波导航算法,以地球同步轨道为例,分析了不同初始误差、轨道倾角、轨道偏心率以及不同脉冲星方位误差下的导航精度.仿真算例表明,在脉冲星方位误差为0.001"、脉冲到达时间测量误差为0.1μs的情况下,导航定位精度优于1 km,且对初始误差不敏感;脉冲星方位精度、脉冲计时精度、轨道面位置和轨道偏心率是影响导航精度的主要因素.  相似文献   

3.
基于X射线脉冲星的深空探测自主导航方法   总被引:3,自引:0,他引:3  
自主导航是实现深空探测任务的关键技术,基于X射线脉冲星的导航方法可靠、稳定、精度高,不受近地空间的限制,为深空自主导航提供了全新的思路。文章分析了X射线脉冲星导航的基本原理,提出了脉冲到达时间预报算法和整周模糊度求解方法,基于最小二乘理论研究了位置估计算法。仿真算例表明该方法在脉冲星方位误差为0.001弧秒、脉冲到达时间测量误差为1μs的情况下,140d飞行时间中定位精度优于10km,且对初始误差不敏感,可以满足深空探测的导航需要。  相似文献   

4.
基于星间链路的导航星座自主导航,存在星座整体旋转误差随时间累积问题,致使星座难于长时间自主运行。X射线脉冲星导航为星座整体旋转问题提供了一种新的解决途径:在导航卫星上安装X射线探测器,探测脉冲星辐射的X射线光子,整合脉冲轮廓和提取影像信息,星载时钟记录脉冲到达时间,经过星载计算机处理得到卫星位置、速度、时间和姿态等导航参数;脉冲星辐射的X射线信号为导航卫星提供了绝对时空基准,不存在星座整体旋转问题。在简要论述基于X射线脉冲星的导航卫星自主导航的基本概念、系统组成和几何原理的基础上,重点研究了导航卫星轨道确定与时间同步的自适应卡尔曼滤波算法,并通过数值分析试验,初步论证利用X射线脉冲星解决自主导航星座整体旋转问题的可行性和合理性。  相似文献   

5.
    
构建脉冲模板是X射线脉冲星导航的一项关键技术,其精度与脉冲星角位置精度密切相关。基于脉冲模板构建的基本原理,推导得到了脉冲星角位置误差对脉冲模板构建影响的系统误差的年化平均值以及任意弧段积分的解析表达式,分析了脉冲星角位置误差对脉冲模板构建的影响。在此基础上,给出了削弱脉冲星角位置误差影响的方法。通过理论推导和仿真分析,验证了误差削弱方法的有效性,可以为优化X射线脉冲星的观测任务以及X射线脉冲模板的构建提供理论支持。  相似文献   

6.
传统的X射线脉冲星导航系统需要同时观测3~4颗脉冲星,有效载荷的质量和功耗极大。因此,单探测器脉冲星导航技术是实现航天器利用X射线脉冲星导航的关键举措。针对单探测器脉冲星导航的可观测性弱和精度低等问题提出了基于虚拟观测值的X射线单脉冲星与星光集中式组合滤波的高精度导航方法,即在X射线脉冲星的长周期内增加与星光同时刻观测的虚拟观测值,以实现高精度的集中式组合滤波算法。同时提出了利用神经网络预测虚拟观测值方法,并与利用动力学递推的方法进行比较,精度可以达到10-7量级。仿真结果表明,该方法可大大提高单探测器的导航的可靠性,补偿由于探测器误差造成的导航误差,导航位置误差为259.79 m,同时有效地减小了导航系统的重量,为X射线脉冲星导航的工程实现提供了参考依据。   相似文献   

7.
基于UKF和信息融合的航天器自主导航方法   总被引:1,自引:0,他引:1  
X射线脉冲星导航利用X射线辐射脉冲到达时间 (Time of Arrival, TOA)作为信息输入,星敏感器导航利用星光角距等作为信息输入,是两种不同机理的天文导航方法。提出一种将脉冲星TOA和星敏感器星光角距测量结合的信息融合天文自主导航方法,设计了一种利用激光光量子模拟脉冲星X射线辐射光子的半物理仿真系统用于算法验证,并基于无迹卡尔曼滤波(Unscented Kalman Filter, UKF)使用真轨道参数做了仿真试验。结果表明,基于UKF的信息融合方法比基于EKF(Extended Kalman Filter)的信息融合方法性能更好,与仅使用脉冲星或星敏感器的导航方法相比,能将位置估计精度分别提高52.7%和43.6%,速度估计精度分别提高82.2%和70.5%。  相似文献   

8.
UKF方法在脉冲星自主导航中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
针对X射线脉冲星自主导航中的非线性系统滤波问题,将无迹卡尔曼滤波方法应用于自主导航计算过程中。首先,在简述脉冲星导航可行性的基础上,研究了脉冲星自主导航系统的基本原理和实施方案。然后,根据牛顿二体引力模型构建了航天器运动状态方程,根据脉冲到达时间模型建立了系统观测方程,并对二者进行了误差分析和建模。最后,将UKF算法应用于航天器自主导航过程中,仿真结果表明该方法能够实现航天器自主导航信息的解算。  相似文献   

9.
X射线脉冲星导航1号(XPNAV-1)是全球首颗脉冲星导航专用试验卫星。利用该卫星观测的单颗脉冲星数据,采用几何约束方法,能够有效抑制轨道误差增长,但存在长时间定轨发散问题。针对XPNAV-1卫星拓展试验任务及脉冲星导航后续发展需求,利用多颗脉冲星的观测数据,研究基于扩展卡尔曼滤波(EKF)的卫星自主定轨算法。首先,建立该卫星的轨道力学模型和观测方程;然后,详细论述EKF滤波算法和分段式定常系统(PWCS)的可观测性分析方法;最后,通过综合分析XPNAV-1卫星的观测数据、脉冲星对该卫星轨道的覆盖性以及系统状态的可观测性,进行自主定轨算法试验。试验结果表明,基于EKF的自主定轨算法滤波过程收敛,验证了该算法的合理性和有效性。  相似文献   

10.
给出一种利用X射线脉冲星的平动点轨道自主导航算法. 分析了X射线脉冲星导航原理, 以脉冲到达时间差值为基本观测量, 建立导航系统观测方程. 在高精度星历模型下, 对日地系L1点Halo轨道建立数学模型, 利用基于UD分解的无迹卡尔曼滤波方法进行导航定位, 并研究了摄动因素对导航结果的影响. 仿真结果表明, 在日地系平动点轨道的自主导航中, X射线脉冲星导航是可行的.   相似文献   

11.
Distributed X-ray pulsar-based navigation (DXNAV) is an effective method to realize earth-orbit satellite positioning under weak pulsar signal conditions. In this paper, we propose a new DXNAV method based on multiple information fusion. The DXNAV system principle and the pulse phase estimate Cramér-Rao lower bound are deduced. To suppress the calculation complexity and the error source, the X-ray pulsar photon time-of-arrival detected by each satellite is equivalently converted to the leading satellite directly using the inter-satellite link ranging and starlight angular distance measurement. A high precision estimate model of the pulse phase is built using pulsar standard profile, observed profile, and star-geocentric angular distance from distributed satellites. The estimated pulse phase is real-time supplied to the navigation system, which is established in the form of a deviation equation. The two-stage Kalman filter is designed to estimate the pulse phase in profile histogram bin step and the leader position in real-time step. Compared separately with the maximum likelihood phase estimate method and the celestial navigation method using only the star-geocentric angular distance, the simulation analysis shows that the estimation precisions of position and velocity are improved by 29% and 25%.  相似文献   

12.
Pulsar navigation is a promising autonomous navigation system for spacecraft, which is applicable to the entire solar system. However, the pulsar’s directional error and the onboard clock error are two types of systematic errors that seriously reduce navigation accuracy. To solve this problem, a star angle/double-differenced pulse time of arrival(SA/DDTOA) integrated navigation method is proposed. Since measurements obtained by observing different pulsars contain the same clock errors, the measurements can be differed to eliminate the common clock error. Then, the pulsar-differenced measurements at neighbor filtering time can be differed to suppress the effect of the pulsar’s directional error on navigation precision. Star angle is used to obtain absolute navigation information, which denotes the angles between the light of sight of Jupiter and that of its background stars. Simulation results demonstrate that the proposed method can eliminate the influence of the onboard clock error and greatly weaken the effects of the pulsar’s directional error. The navigation accuracy is better than the traditional star angle/pulse time of arrival integrated navigation method and star angle/pulse time difference of arrival integrated navigation method. In addition, the navigation accuracy of the SA/DDTOA integrated navigation method is less affected by Jupiter’s ephemeris error. This work greatly reduces the influence of common systematic errors in pulsar navigation on navigation accuracy.  相似文献   

13.
分时段实时观测脉冲星的单探测器导航方法   总被引:1,自引:1,他引:0  
传统的X射线脉冲星导航系统需要同时观测3~4颗脉冲星,有效载荷的质量和功耗极大。针对航天器环地飞行中受地球遮挡、探测器可探测范围等因素影响,导致脉冲星并非所有时刻均可见的现象,提出了单探测器分时段实时观测脉冲星的导航方法。根据航天器的实际飞行情况,系统分析探测器在不同探测范围下对脉冲星实时的可见性状况,从每时段的可见星中选取单星进行导航。仿真表明,该方法可大大提高单探测器的导航性能,导航位置误差达到337m,同时有效地减小了导航系统的重量,为X射线脉冲星导航的工程实现提供了参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号