首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Satellite observations have revealed solitary potential structures in the Earth’s magnetotail region. These structures have both positive (compressive) and negative (rarefactive) electrostatic potentials. In this paper we study the electron-acoustic solitary waves (EASWs) in an unmagnetized plasma consisting of cold plasma electrons and isothermal ions with two different temperatures. Using the reductive perturbation method, the nonlinear evolution of such structures is studied. The numerical computations are performed to study the role of two temperature ions in the generation of EASWs. In this case, the model supports the existence of both positive and negative electrostatic potentials with bipolar pulses. The electric field associated with these positive and negative solitary structures are numerically computed. The present study could be useful to construe the compressive and rarefactive electric field bipolar pulses associated with the BEN type emissions in the magnetospheric regions where the electron beams are not present.  相似文献   

2.
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.  相似文献   

3.
Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q=0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.  相似文献   

4.
The nonlinear propagation of ion–acoustic (IA) waves in a magneto–rotating plasma is studied by considering the Kappa-Cairns electron distribution. Employing the perturbation scheme, Korteweg–de Vries equation is derived. It is seen that both positive and negative potential solitons can be supported in the present plasma model. The numerical results reveal that the Kappa-Cairns distributed electrons modify features of the electrostatic waves significantly. The effects of non–thermal parameters, plasma rotation frequency, ion temperature, and the wave propagation angle on electrostatic solitary wave structures are also discussed here. It is found that the plasma parameters considerably influence the propagation of IA waves in rotating plasmas. Furthermore, using the bifurcation theory of planar dynamical systems to the K-dV equation, we have presented the existence of solitary and periodic traveling waves. Our study may be helpful to understand the behavior of ion–acoustic wave in the rotating plasma.  相似文献   

5.
A theoretical investigation has been made for adiabatic positive and negative dust charge fluctuations on the propagation of dust-ion acoustic waves (DIAWs) in a weakly inhomogeneous, collisionless, unmagnetized dusty plasmas consisting of cold positive ions, stationary positively and negatively charged dust particles and isothermal electrons. The reductive perturbation method is employed to reduce the basic set of fluid equations to the variable coefficients Korteweg–de Vries (KdV) equation. Either compressive or rarefactive solitons are shown to exist depending on the critical value of the ion density, which in turn, depends on the inhomogeneous distribution of the ion. The dissipative effects of non-adiabatic dust charge variation has been studied which cause generation of dust ion acoustic shock waves governed by KdV-Burger (KdVB) equation. The results of the present investigation may be applicable to some dusty plasma environments, such as dusty plasma existing in polar mesosphere region.  相似文献   

6.
考虑热束流等离子体无碰撞地通过背景等离子体时, 由等离子体系统的流体方程组出发用递减扰动法推导了描写离子声孤波的Kortewegde-Vries方程.在弱束流的条件下, 四种离子声波模式中有两种分别对应慢孤波和快孤波.计算了两种孤波振幅对等离子体参量的依赖关系, 在某些参量配合下有可能得到大振幅的正孤波和负孤波.   相似文献   

7.
Within a quantum hydrodynamic model and using the reductive perturbation technique, the nonlinear ion-acoustic wave (IAW) excitations due to a moving charged object in an electron-pair-ion quantum plasma are studied both analytically and numerically. In such quantum plasmas we have derived forced Korteweg-de Vries (fKdV) type equation for finite amplitude nonlinear IAWs. The effect of relevant plasma parameters on solitonic excitations is investigated. Numerical simulation shows the generation of advancing solitons ahead of the forcing term traveling at a faster rate with trailing wakes behind the forcing disturbance. It is found that propagation characteristics of nonlinear excitations are significantly affected by quantum parameter. Additionally, we have pursued our analysis by extending it to account for arbitrary amplitude IA solitons, and derived a system of nonlinear differential equations which are analyzed numerically to study the dynamics. Nonlinear analysis predicts the existence of periodic and quasiperiodic nature of the nonlinear system and reveals that the transition from quasiperiodic to periodic behavior occurs due to the variation of quantum diffraction.  相似文献   

8.
The non-linear theory of ion-acoustic waves in two-spesies isotropic collisionless plasma is developed. Both light electron and heavy ion species in the plasma are distributed with Kaniadakis’ statistics. Kaniadakis’ gas law is derived. The exact formula for the Sagdeev pseudopotential in parametric form is derived by the method based on the integration of the inverse function. The pseudopotential is analyzed. It is shown that periodic ion-acoustic waves and solitons are possible in the studied plasma. The differential equation describing the profile of the ion concentration in the wave is derived. The profiles of this concentration in the periodic ion-acoustic wave and soliton are calculated.  相似文献   

9.
Based on the considerations of the acknowledgements of the numerous space observations by satellites in the auroral plasma, astrophysics plasmas, spacecraft observations, various plasma models have been framed and revealed different interesting features, like electrostatic structures, solitary waves, double layers, supersolitons, etc. Soliton theory is a very efficient and competent way to describe nonlinear features. Using Viking satellite data in the auroral plasma, we have derived lump soliton solutions of the Kadomstev-Petviashvili (KP) equation by employing Hirota bilinear method. Due to its wide range of applications, the study of lump soliton is very attractive and important too. It has been shown that the lump solitons structures as well as in the one-dimensional form of lump soliton are varied with associated parameters in the auroral magnetized plasma. During the analysis of the features of the lump solitons, it is found that the system parameters play a pivotal role on the lump solitons structures.  相似文献   

10.
离子温度对磁化等离子体中非线性静电波的影响   总被引:1,自引:0,他引:1  
本文讨论了无碰撞磁化低β等离子体中离子温度对非线性静电波的影响。结果表明,在参量α≡Ti/Te≠0条件下,存在着三种非线性静电波(Ti和Te分别为离子和电子的热能):在波速νp>(1+α)(1/2)cs情况下存在着非线性离子回旋周期波;在(1+α)(1/2)cscosθp<(1+α)(1/2)cs情况下存在着离子声孤立波;在vp<(1+α)(1/2)cscosθ情况下存在着非线性离子声周期波。当参量α增加时,孤立波的波幅(最大电位)减小,而另外两种非线性周期波的电位幅度都几乎保持不变。   相似文献   

11.
日冕背景下的等离子体尾场效应   总被引:1,自引:0,他引:1  
计算了高能脉冲电子束在冷背景和热背景等离子体条件下产生的等离子体尾场(PWF)大小,讨论了高能电子束的速度、密度、长度对等离子体尾场分布的影响。在这基础上,研究了太阳耀斑脉冲相产生的向外逃逸高能脉冲电子束在日冕背景等离子体条件下激发的等离子体尾场分布以及对其捕获电子的加速。   相似文献   

12.
Ion beams observed in the plasma sheet boundary layer (PSBL), cusp, and on the auroral zone field lines are expected to have spatial gradients in their drift velocity. Generation of kinetic Alfvén waves by velocity shear of the ion beams is discussed. It is shown that a hot ion beam can excite both a resonant kinetic Alfvén wave instability and a non-resonant coupled Alfvén-ion acoustic instability. For typical parameters, observed on the auroral field lines in the altitude range of 5–7 RE (where RE is the Earth’s radius), the frequency of the velocity shear modes, in the satellite frame of reference, lie in the ultra-low frequency (ULF) range. The noise due to velocity shear driven Alfvén modes is electromagnetic in nature, and has a finite parallel electric field component.  相似文献   

13.
We reported the results of our investigations of wave activity in high-frequency range performed on board CLUSTER spacecraft in the middle-altitude cusp region, around 5 RE during August and September 2002. Our analysis was mainly based on the registration gathered by the WHISPER instrument (Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation). For a better understanding of the processes of wave-particle interaction and in order to understand the general plasma conditions in the cusp region, we also included in our analysis the data registered by the STAFF (Spatio-Temporal Analysis of Field Fluctuation experiment) instrument and the CIS (Ion Spectrometry experiment) instrument. These observations were carried out during different geomagnetic activity; under quiet conditions and during magnetic storm period. The space plasma is characterised by the ratio of plasma frequency to electron gyrofrequency, in this case, the local plasma frequency was, mainly, a little greater than the electron plasma, but it was also frequently observed that these two characteristic frequencies were not very different from one another. The whistler waves, electron-cyclotron waves, electron-acoustic waves and Langmuir waves have been detected when the spacecraft was crossing the middle-altitude cusp region. We suggested that the majority of those waves were generated by electron beams. For a better understanding the plasma conditions in the low and middle-altitude cusp region the past FREJA wave data results are used to describe typical wave activity detected in the low-altitude cusp region. The aim of this paper is to discuss, on the basis of a few chosen representative examples, the property of typical high wave activity detected in the lower part of cusp region.  相似文献   

14.
We investigated the effect of the presence of a nonthermal electron population on the electrostatic nonlinear waves. We considered positively charged ions with two electron populations. Using the fluid equations for the unmagnetized case and the Sagdeev pseudo-potential approach the nonlinear ion-acoustic waves are studied. The cold electrons are in thermal equilibrium while the hot electron population follows a nonthermal distribution. Numerical investigation shows the importance of the presence of small amount of cold electrons that make it possible for the plasma to support nonlinear waves. We obtained the minimum cold electron density necessary to sustain these nonlinear waves. The relevant situation corresponds to the upper ionosphere where energetic electrons have been observed.  相似文献   

15.
Since 1970 the Minnesota group has completed five sounding rocket experiments in which electron beams were injected into the magnetosphere at ionospheric heights and the interaction of the beams with the nearby and distant magnetosphere studied. By the technique of precisely locating conjugate region beam echoes the distant electric and magnetic field structures were studied by mapping into the local ionosphere. Ionospheric fields were measured directly for comparison. Subjects studied included gradient and curvature drifts, electric field drifts, electron pitch angle diffusion and other types of interactions with the tail plasma sheet region and the nearby ionosphere and atmosphere. The beams were also studied by plasma wave and ground-based electromagnetic detectors, by ground-based low light level television techniques and by extensive on-board rocket x-ray, photometer and particle detectors. Vehicle potentials and neutralizing processes and beam-ionosphere interactions have also been studied but will not be discussed in this paper.  相似文献   

16.
Broadband electrostatic noise (BEN) is commonly observed in different regions of the Earth’s magnetosphere, eg., auroral region, plasma sheet boundary layer, etc. The frequency of these BENs lies in the range from lower hybrid to the local electron plasma frequency and sometimes even higher. Spacecraft observations suggest that the high and low-frequency parts of BEN appear to be two different wave modes. There is a well established theory for the high-frequency part which can be explained by electrostatic solitary waves, however, low-frequency part is yet to be fully understood. The linear theory of low-frequency waves is developed in a four-component magnetized plasma consisting of three types of electrons, namely cold background electron, warm electrons, warm electron beam and ions. The electrostatic dispersion relation is solved, both analytically and numerically. For the parameters relevant to the auroral region, our analysis predict excitation of electron acoustic waves in the frequency range of 17 Hz to 2.6 kHz with transverse wavelengths in range of (1–70) km. The results from this model may be applied to explain some features of the low-frequency part of the broadband electrostatic noise observed in other regions of the magnetosphere.  相似文献   

17.
Nonlinear propagation of fast and slow magnetosonic perturbation modes in an ultra-cold, degenerate (extremely dense) electron–positron (EP) plasma (containing non-relativistic, ultra-cold, degenerate electron and positron fluids) has been investigated by the reductive perturbation method. It is shown that due to the property of being equal mass of the plasma species (me=mpme=mp, where meme and mpmp are electron and positron mass, respectively), the degenerate EP plasma system supports the K-dV solitons which are associated with either fast or slow magnetosonic perturbation modes. It is also found that the basic features of the electromagnetic solitary structures, which are found to exist in such a degenerate EP plasma, are significantly modified by the effects of degenerate electron and positron pressures. The applications of the results in an EP plasma medium, which occurs in compact astrophysical objects, particularly in white dwarfs, have been briefly discussed.  相似文献   

18.
In this paper the investigation of wave-particle interaction during simultaneous injection of electron and xenon ion beams from the satellite Intercosmos-25 (IK-25) carried out using the data of the double satellite system with subsatellite Magion-3 (APEX). Results of active space experiment devoted to the beam-plasma instability are partially presented in the paper Baranets et al. (2007). A specific feature of the experiment carried out in orbits 201, 202 was that charged particle flows were injected in the same direction along the magnetic field lines B0 so the oblique beam-into-beam injection have been produced. Results of the beam-plasma interaction for this configuration were registered by scientific instruments mounted on the station IK-25 and Magion-3 subsatellite. Main attention is paid to study the electromagnetic and longitudinal waves excitation in different frequency ranges and the energetic electron fluxes disturbed due to wave-particle interaction with whistler waves. The whistler wave excitation on the 1st electron cyclotron harmonic via normal Doppler effect during electron beam injection in ionospheric plasma are considered.  相似文献   

19.
The Zakharov–Kuznetzov (ZK) equation is derived for nonlinear electrostatic waves in a weakly magnetized plasma in the presence of anisotropic ion pressure and superthermal electrons. The anisotropic ion pressure is defined using Chew–Goldberger–Low (CGL) while a generalized Lorentzian (kappa) distribution is assumed for the non-thermal electrons. The standard reductive perturbation method (RPM) is employed to derive the two dimensional ZK equation for the dynamics of obliquely propagating low frequency ion acoustic wave. The influence of spectral index (kappa) of non-thermal electron on the soliton is discussed in the presence of anisotropic ion pressure in plasmas. It is found that ion pressure anisotropy and superthermality of electrons affect both the width and amplitude of the solitary waves. On the other hand the magnetic field is found to alter the dispersive property of the plasma only, and hence the width of the solitons is affected while the amplitude of the solitary waves is independent of external magnetic field. The numerical results are also presented for illustrations.  相似文献   

20.
The bipolar electric field solitary (EFS) structures have been frequently observed in the near Earth plasma regions, such as auroral zone, magnetopause, cusp regions, and magneto-tail. Sometimes these structures are observed as offset bipolar structures. In this paper, the properties of the offset bipolar EFS structures parallel to the magnetic field are studied with an ion fluid model in a cylindrical symmetry by considering electrostatic condition. The model results show that the offset bipolar EFS structures can develop from both ion-acoustic waves and ion cyclotron waves, and propagate along the magnetic field line in the space plasmas if plasma satisfies some conditions. The offset bipolar EFS structures can have both polarities. It will be first negative pulse and then positive pulse if the initial electric field E0 < 0 or reverse in order if E0 > 0. The amplitude of the offset bipolar EFS structures first decreases and then increases with the wave propagation velocity. Some results from our model are consistent with the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号