首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of cylindrical and spherical dust–ion acoustic solitary waves (DIASW) in an unmagnetized dusty plasma comprising of relativistic ions, Boltzmann electrons, and stationary dusty particles are investigated. Under a suitable coordinate transformation, the cylindrical KdV equation can be solved analytically. The change of the DIASW structure due to the effect of geometry, relativistic streaming factor, ion density and electron temperature is studied by numerical calculation of the cylindrical/spherical Kdv equation. It is noted that with ion pressure the effect of relativistic streaming factor to solitary waves structure is different. Without ion pressure, as the relativistic streaming factor decreases, the amplitude of the solitary wave decreases. However, when the ion pressure is taken into account, the amplitude decreases as the relativistic streaming factor increases and is highly sensitive to relativistic streaming factor. Our results may have relevance in the understanding of astrophysical plasmas.  相似文献   

2.
A theoretical investigation has been made for electron acoustic waves propagating in a system of unmagnetized collisionless plasma consists of a cold electron fluid and ions with two different temperatures in which the hot ions obey the non-thermal distribution. The reductive perturbation method has been employed to derive the Korteweg–de Vries equation for small but finite amplitude electrostatic waves. It is found that the presence of the energetic population of non-thermal hot ions δ, initial normalized equilibrium density of low temperature ions μ and the ratio of temperatures of low temperature ions to high temperature ions β do not only significantly modify the basic properties of solitary structure, but also change the polarity of the solitary profiles. At the critical hot ions density, the KdV equation is not appropriate for describing the system. Hence, a new set of stretched coordinates is considered to derive the modified KdV equation. In the vicinity of the critical hot ions density, neither KdV nor modified KdV equation is appropriate for describing the electron acoustic waves. Therefore, a further modified KdV equation is derived. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the various KdV-type equations, is used here. Numerical studies have been reveals different solutions e.g., bell-shaped solitary pulses, singular solitary “blowup” solutions, Jacobi elliptic doubly periodic wave, Weierstrass elliptic doubly periodic type solutions, in addition to explosive pulses. The results of the present investigation may be applicable to some plasma environments, such as Earth’s magnetotail region.  相似文献   

3.
A theoretical investigation has been made for adiabatic positive and negative dust charge fluctuations on the propagation of dust-ion acoustic waves (DIAWs) in a weakly inhomogeneous, collisionless, unmagnetized dusty plasmas consisting of cold positive ions, stationary positively and negatively charged dust particles and isothermal electrons. The reductive perturbation method is employed to reduce the basic set of fluid equations to the variable coefficients Korteweg–de Vries (KdV) equation. Either compressive or rarefactive solitons are shown to exist depending on the critical value of the ion density, which in turn, depends on the inhomogeneous distribution of the ion. The dissipative effects of non-adiabatic dust charge variation has been studied which cause generation of dust ion acoustic shock waves governed by KdV-Burger (KdVB) equation. The results of the present investigation may be applicable to some dusty plasma environments, such as dusty plasma existing in polar mesosphere region.  相似文献   

4.
The nonlinear propagation of ion–acoustic (IA) waves in a magneto–rotating plasma is studied by considering the Kappa-Cairns electron distribution. Employing the perturbation scheme, Korteweg–de Vries equation is derived. It is seen that both positive and negative potential solitons can be supported in the present plasma model. The numerical results reveal that the Kappa-Cairns distributed electrons modify features of the electrostatic waves significantly. The effects of non–thermal parameters, plasma rotation frequency, ion temperature, and the wave propagation angle on electrostatic solitary wave structures are also discussed here. It is found that the plasma parameters considerably influence the propagation of IA waves in rotating plasmas. Furthermore, using the bifurcation theory of planar dynamical systems to the K-dV equation, we have presented the existence of solitary and periodic traveling waves. Our study may be helpful to understand the behavior of ion–acoustic wave in the rotating plasma.  相似文献   

5.
This paper introduces an investigation of shocklike soliton or small amplitude Double Layers (DLs) in a collisionless plasma, consisting of positive and negative ions, nonthermal electrons, as well as solar wind streaming protons and electrons. Gardner equation is derived and its shocklike soliton solution is obtained. The model is employed to recognize a possible nonlinear wave at Venus ionosphere. The results indicate that the number densities and velocities of the streaming particles play crucial role to determine the polarity and characteristic features (amplitude and width) of the shocklike soliton waves. An electron streaming speed modifies a negative shocklike wave profile, while an ion streaming speed modulates a positive shocklike wave characteristic.  相似文献   

6.
The properties of cylindrical and spherical electron acoustic shock waves (EASWs) in an unmagnetized plasma consisting of cold electrons, immobile ions and Boltzmann distributed hot electrons are investigated by employing the reductive perturbation method. A Korteweg–de Vries Burgers (KdVB) equation is derived and its numerical solution is obtained. The effects of several parameters and ion kinematic viscosity on the basic features of EA shock waves are discussed in nonplanar geometry. It is found that nonplanar EA shock waves behave quite differently from their one-dimensional planar counterpart.  相似文献   

7.
We investigate electron acceleration due to shear Alfvén waves in a collissionless plasma for plasma parameters typical of 4–5RE radial distance from the Earth along auroral field lines. Recent observational work has motivated this study, which explores the plasma regime where the thermal velocity of the electrons is similar to the Alfvén speed of the plasma, encouraging Landau resonance for electrons in the wave fields. We use a self-consistent kinetic simulation model to follow the evolution of the electrons as they interact with a short-duration wave pulse, which allows us to determine the parallel electric field of the shear Alfvén wave due to both electron inertia and electron pressure effects. The simulation demonstrates that electrons can be accelerated to keV energies in a modest amplitude sub-second period wave. We compare the parallel electric field obtained from the simulation with those provided by fluid approximations.  相似文献   

8.
本文研究了由背景热电子、背景冷质子(H+)和强各向异性氧离子(O+)束组成的模型等离子体中静电O+迴旋波和离子声波不稳定性.结果表明,低频(|ω|<σpp表示质子迴旋频率)静电O+迴旋波和离子声波可以由极光场线上上行O+束来激发.上行O+束可能是极光场线上低频静电不稳定性一个重要的自由能源.   相似文献   

9.
二维静电孤立波的粒子模拟研究   总被引:1,自引:0,他引:1  
利用二维粒子模拟程序研究了双流不稳定性激发静电波并演化为静电孤立波的物理过程.计算结果表明,在线性增长阶段,主要激发的是沿磁场传播的静电波;在非线性演化阶段,相邻的静电波会互相合并,直至形成静电孤立波,并可激发静电哨声波.还研究了磁场强度和离子温度对此过程的影响.当磁场强度比较小时,无法形成静电孤立波,只有磁场强度达到一定程度后静电孤立波才能形成;同时,离子温度会影响静电孤立波的稳定性,当离子温度比较小时,静电孤立波的稳定性减弱,在演化一段时间后会逐渐瓦解.   相似文献   

10.
Nonlinear isolated electrostatic solitary waves (ESWs) are observed routinely at many of Earth’s major boundaries by the Wideband Data (WBD) plasma wave receivers that are mounted on the four Cluster satellites. The current study discusses two aspects of ESWs: their characteristics in the magnetosheath, and their propagation in the magnetosheath and in the auroral acceleration (upward current) region. The characteristics (amplitude and time duration) of ESWs detected in the magnetosheath are presented for one case in which special mutual impedance tests were conducted allowing for the determination of the density and temperature of the hot and cold electrons. These electron parameters, together with those from the ion experiment, were used as inputs to an electron acoustic soliton model as a consideration for the generation of the observed ESWs. The results from this model showed that negative potential ESWs of a few Debye lengths (10–50 m) could be generated in this plasma. Other models of ESW generation are discussed, including beam instabilities and spontaneous generation out of turbulence. The results of two types of ESW propagation (in situ and remote sensing) studies are also presented. The first involves the propagation of bipolar type ESWs from one Cluster spacecraft to another in the magnetosheath, thus obtaining the velocity and size of the solitary structures. The structures were found to be very flat, with large scale perpendicular to the magnetic field (>40 km) and small scale parallel to the field (<1 km). These results were then discussed in terms of various models which predict such flat structures to be generated. The second type of propagation study uses striated Auroral Kilometric Radiation (SAKR) bursts, observed on multiple Cluster satellites, as tracers of ion solitary waves in the upward current region. The results of all studies discussed here (pulse characteristics and ESW velocity, lifetime, and size) are compared to in situ measurements previously made on one spacecraft and to theoretical predictions for these quantities, where available. The primary conclusion drawn from the propagation studies is that the multiple spacecraft technique allows us to better assess the stability (lifetime) of ESWs, which can be as large as a few seconds, than can be achieved with single satellites.  相似文献   

11.
Plasma physics has found an increasing range of practical industrial applications, including the development of electric spacecraft propulsion systems. One of these systems, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, both applies several important physical processes occurring in the magnetosphere. These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Auroral current region processes that are simulated in VASIMR include lower hybrid heating, parallel electric field acceleration and ion cyclotron acceleration. This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron resonance heating (ICRH). The major purpose is to provide a VASIMR status report to the COSPAR community. The VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma. This plasma is energized by an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. The present setup for the booster uses 2–4 MHz waves with up to 20 kW of power. This process is similar to the ion cyclotron heating in tokamaks, but in the VASIMR the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The ICRH produced a substantial increase in ion velocity. Pitch angle distribution studies show that this increase takes place in the resonance region where the ion cyclotron frequency is equal to the frequency on the injected RF waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR. In deuterium plasma, 80% efficient absorption of 20 kW of ICRH input power has been achieved. No evidence for power limiting instabilities in the exhaust beam has been observed.  相似文献   

12.
Collisionless unmagnetized plasma consisting of a mixture of warm ion-fluid and isothermal-electron is considered, assuming that the ion flow velocity has a weak relativistic effect. The reductive perturbation method has been employed to derive the Korteweg–de Vries (KdV) equation for small – but finite-amplitude electrostatic ion-acoustic waves in this plasma. The semi-inverse method and Agrawal’s method lead to the Euler–Lagrange equation that leads to the time fractional KdV equation. The variational-iteration method given by He is used to solve the derived time fractional KdV equation. The calculations show that the fractional order may play the same rule of higher order dissipation in KdV equation to modulate the soliton wave amplitude in the plasma system. The results of the present investigation may be applicable to some plasma environments, such as space-plasmas, laser-plasma interaction, plasma sheet boundary layer of the earth’s magnetosphere, solar atmosphere and interplanetary space.  相似文献   

13.
近几年卫星空间电场测量经常证认出局地非线性离子静电波,它们可能与极光粒子加速有直接关系。这些静电波被认为或者是离子声波模的演化,或者是静电离子逥旋波模的演化结果。本文研究了磁场中斜传播小振幅离子非线性波的演化,得到非线性Schrodinger方程。结果表明离子声孤波和离子迴旋孤波都是可能的。计算结果与卫星S(3-3)电场测量比较,可以很好说明部分测量结果。   相似文献   

14.
The bipolar electric field solitary (EFS) structures have been frequently observed in the near Earth plasma regions, such as auroral zone, magnetopause, cusp regions, and magneto-tail. Sometimes these structures are observed as offset bipolar structures. In this paper, the properties of the offset bipolar EFS structures parallel to the magnetic field are studied with an ion fluid model in a cylindrical symmetry by considering electrostatic condition. The model results show that the offset bipolar EFS structures can develop from both ion-acoustic waves and ion cyclotron waves, and propagate along the magnetic field line in the space plasmas if plasma satisfies some conditions. The offset bipolar EFS structures can have both polarities. It will be first negative pulse and then positive pulse if the initial electric field E0 < 0 or reverse in order if E0 > 0. The amplitude of the offset bipolar EFS structures first decreases and then increases with the wave propagation velocity. Some results from our model are consistent with the observations.  相似文献   

15.
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.  相似文献   

16.
The whistler-mode waves and electron temperature anisotropy play a key role prior to and during magnetic reconnection. On August 21, 2002, the Cluster spacecrafts encountered a quasi-collisionless magnetic reconnection event when they crossed the plasma sheet. Prior to the southward turning of magnetospheric magnetic field and high speed ion flow, the whistler-mode waves and positive electron temperature anisotropy are simultaneously observed. Theoretic analysis shows that the electrons with positive temperature anisotropy can excite the whistler-mode waves via cyclotron resonances. Using the data of particles and magnetic field, we estimated the whistler-mode wave growth rate and the ratio of whistler-mode growth rate to wave frequency. They are 0.0016fce (Electron cyclotron frequency) and 0.0086fce, respectively. Therefore the whistler-mode waves can grow quickly in the current sheet. The combined observations of energetic electron beams and waves show that after the southward turning of magnetic field, energetic electrons in the reconnection process are accelerated by the whistler-mode waves.  相似文献   

17.
利用ACE和WIND卫星2007年1月6日的联合探测, 在1AU附近发现了一个等离子体密度极低的Petschek-like重联喷流区. 该喷流区内部出现了非常明显的Hall双极磁场、等离子体密度下降区以及与Hall电流相符的低能段电子投掷角分布. 这些特征与重联离子扩散区的Hall效应非常吻合, 说明很可能在太阳风中观测到了一个离子扩散区. 分析表明, 与之相关的磁场重联为准稳态快速完全反向重联, 其扩散区以一对慢模波为边界, 空间尺度达到80个离子惯性长度, 表现出了大尺度重联的特征.   相似文献   

18.
Release of stored magnetic energy via particle acceleration is a characteristic feature of astrophysical plasmas. Magnetic reconnection is one of the mechanisms for releasing energy from magnetized plasmas. Collisionless magnetic reconnection could provide both the energy release mechanism and the particle accelerator in space plasmas. Here we studied particle acceleration when fluctuating (in-time) electric fields are superposed on an static X-type magnetic field in collisionless hot solar plasma. This system is chosen to mimic the reconnective dissipation of a linear MHD disturbance. Our results are compared to particle acceleration from constant electric field superposed on an X-type magnetic field. The constant electric field configuration represents the effects of steady state magnetic reconnection. Time evolution of ion and electron distributions are obtained by numerically integrating particle trajectories. The frequencies of the electric field represent a turbulent range of waves. Depending on the frequency and amplitude of the electric field, electrons and ions are accelerated to different degrees and have energy distributions of bimodal form consisting of a lower energy part and a high energy tail. For frequencies (ω in dimensioless units) in the range 0.5 ? ω ? 1.0 a substantial fraction (20%–30%) of the proton distribution is accelerated to gamma-ray producing energies. For frequencies in the range 1 ? ω ? 100.0 the bulk of the electron distribution is accelerated to hard X-ray producing energies. The acceleration mechanism is important for solar flares and solar noise storms but it could be applicable to all collisionless astrophysical plasmas.  相似文献   

19.
考虑热束流等离子体无碰撞地通过背景等离子体时, 由等离子体系统的流体方程组出发用递减扰动法推导了描写离子声孤波的Kortewegde-Vries方程.在弱束流的条件下, 四种离子声波模式中有两种分别对应慢孤波和快孤波.计算了两种孤波振幅对等离子体参量的依赖关系, 在某些参量配合下有可能得到大振幅的正孤波和负孤波.   相似文献   

20.
We study the structure and kinetic properties of slow-mode shocks near the plasma sheet boundary layer (PSBL) associated with magnetic reconnection by Cluster observation. The presence of slow-mode shocks is confirmed by traditional Rankine–Hugoniot (RH) analysis and Monte-Carlo shock fitting method. The Walén analysis, applied to the tailward flow associated with slow-mode shocks, also supports that plasma was accelerated across a Petschek-type slow-mode shock connected to the diffusion region. Back-streaming ions were observed on the shock layer, and cold ions were accelerated and heated by slow-mode shocks. In addition, whistler and electrostatic solitary waves were observed around the slow-mode shocks. These waves might be excited by the observed field-aligned electron beams near the shocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号