首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-affinity Na+-dependent glutamate transporters of the plasma membrane mediate the glutamate uptake into neurons, and thus maintain low levels of extracellular glutamate in the synaptic cleft. The study focused on the release of glutamate by reversal of Na+-dependent glutamate transporters from rat brain nerve terminals (synaptosomes) under conditions of centrifuge-induced hypergravity. Flow cytometric analysis revealed similarity in the size and cytoplasmic granularity between synaptosomal preparations obtained from control and G-loaded animals (10 G, 1 h). The release of cytosolic l-[14C]glutamate from synaptosomes was evaluated using the protonophore FCCP, which dissipated synaptic vesicle proton gradient, thus synaptic vesicles were not able to keep glutamate inside and the latter enriched cytosol. FCCP per se induced the greater release of l-[14C]glutamate in hypergravity as compared to control (4.8 ± 1.0% and 8.0 ± 1.0% of total label). Exocytotic release of l-[14C]glutamate evoked by depolarization was reduced down to zero after FCCP application under both conditions studied. Depolarization stimulated release of cytosolic l-[14C]glutamate from synaptosomes preliminary treated with FCCP was considerably increased from 27.0 ± 2.2% of total label in control to 35.0 ± 2.3% in hypergravity. Non-transportable inhibitor of glutamate transporter dl-threo-β-benzyloxyaspartate was found to significantly inhibit high-KCl and FCCP-stimulated release of l-[14C]glutamate, confirming the release by reversal of glutamate transporters. The enhancement of transporter-mediated release of glutamate in hypergravity was found to result at least partially from the inhibition of the activity of Na/K-ATPase in the plasma membrane of synaptosomes. We suggested that hypergravity-induced alteration in transporter-mediated release of glutamate indicated hypoxic injury of neurons.  相似文献   

2.
Thermospheric infrared radiance at 4.3 μm is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO+ (i.e., NO+(v)) and subsequent 4.3 μm emission in the ionospheric E-region. Large enhancements of nighttime 4.3 μm emission were observed by the TIMED/SABER instrument during the April 2002 and October–November 2003 solar storms. Global measurements of infrared 4.3 μm emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO+ concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 μm emission observed from SABER and assess the impact of NO+(v) 4.3 μm emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument.  相似文献   

3.
The purpose of this work was to develop technology for recycling NaCl containing in human liquid waste as intrasystem matter in a bioregenerative life support system (BLSS). The circulation of Na+ and Cl excreted in urine is achieved by inclusion of halophytes, i.e. plants that naturally inhabit salt-rich soils and accumulate NaCl in their organs. A model of Na+ and Cl recycling in a BLSS was designed, based on the NaCl turnover in the human–urine–nutrient solution–halophytic plant–human cycle. The study consisted of (i) selecting a halophyte suitable for inclusion in a BLSS, and (ii) determining growth conditions supporting maximal Na+ and Cl accumulation in the shoots of the halophyte growing in a nutrient solution simulating mineralized urine. For the selected halophytic plant, Salicornia europaea, growth rate under optimal conditions, biomass production and quantities of Na+ and Cl absorbed were determined. Characteristics of a plant production conveyor consisting of S.europaea at various ages, and allowing continuity of Na+ and Cl turnover, were estimated. It was shown that closure of the NaCl cycle in a BLSS can be attained if the daily ration of fresh Salicornia biomass for a BLSS inhabitant is approximately 360 g.  相似文献   

4.
Study of depth–dose distributions for intermediate energy ion beams in tissue-like media such as polyethylene (CH2)n provides a good platform for further improvements in the fields of hadrontherapy and space radiation shielding. The depth–dose distributions for 12C ions at various energies and for light and intermediate ion beams (3He, 16O, 20Ne and 28Si) as well as for heavy ions 56Fe in polyethylene were estimated by using simulation toolkit: Geant4. Calculations were performed mainly by considering two different combinations of standard electromagnetic (EM), binary cascade (BIC), statistical multifragmentation (SMF) and Fermi breakup (FB) models. The energies of the ion beams were selected to achieve the Bragg peaks at predefined position (∼60 mm) and as per their availability. Variations of peak-to-entrance ratio (from 7.44 ± 0.05 to 8.87 ± 0.05), entrance dose (from 2.89 ± 0.01 to 203.71 ± 0.63 MeV/mm) and entrance stopping power (from 3.608 to 208.858 MeV/mm, calculated by SRIM) with atomic number (Z) were presented in a systematic manner. The better peak-to-entrance ratio and less entrance dose in the region Z = 2 to 8 (i.e. 3He to 16O) may provide the suitability of the ion beams for hadrontherapy.  相似文献   

5.
The solar flare of January 20, 2005 (X7.1, 06:36–07:26 UT, maximum at 07:01 UT by the GOES soft X-ray data) was the most powerful one in January 2005 series. The AVS-F apparatus onboard CORONAS-F registered γ-emission during soft X-ray rising phase of this flare in two energy ranges of 0.1–20 MeV and 2–140 MeV. The highest γ-ray energy registered during this flare was ∼140 MeV. Six spectral features were registered in energy spectrum of this solar flare: annihilation + αα (0.4–0.6 MeV), 24Mg + 20Ne + 28Si + neutron capture (1.7–2.3 MeV), 21Ne + 22Ne + 16O + 12С (3.2–5.0 MeV), 16O (5.3–6.9 MeV), one from neutral pions decay (25–110 MeV) and one in energy band 15–21 MeV. Four of them contain typical for solar flares lines – annihilation, nuclear de-excitation and neutron capture at 1H. Spectral feature caused by neutral pions decay was registered during several flares too. Some spectral peculiarities in the region of 15–21 MeV were first observed in solar flare energy spectrum.  相似文献   

6.
Densities derived from accelerometer measurements on the CHAMP satellite near 400 km are used to statistically establish characteristics of large-scale (>1000 km) traveling atmospheric disturbances (TADs). Only TADs that at least propagate from the auroral zone to the equator are analyzed here, and a total of 21 identifiable events are found over the years 2001–2007. The average speed of all TADs, regardless of local time, is 646 ± 122 ms−1. The average speeds on the dayside and nightside are 595 ± 127 ms−1 and 685 ± 106 ms−1, respectively, i.e., the speed appears to be 10% higher on average on the nightside. On six occasions TADs were only detected on the night side; however, TADs on the dayside often appear more distinctly in the data. Moreover, contrary to some theoretical expectations, dayside TADs do not dissipate more readily than night side TADs, although much less are detected between 8–20 solar local time. No clear dependence of TAD amplitude or phase speed with respect to Kp, or rate of increase of Kp, is found.  相似文献   

7.
The geometries, dipole moments, and rotational constants for the linear and/or bent cations, Cn+1H+ and CnN+(n = 1–6), were studied by the B3LYP method with the modest basis sets. For CnH+(n = odd; 3, 5, 7) and CnN+(n = even; 2, 4, 6), the theoretical rotational constants (Bes) of closed-shell singlet C3H+, C5H+, C7H+, CCN+, C4N+, and C6N+ were calculated to be about 11,244, 2420, 885.2, 11,970, 2439, and 880.8 MHz, respectively. By contrast, the triplets are stable than the corresponding singlets for CnH+(n = odd; 2, 4, 6) and CnN+(n = even; 3, 5) except CN+.  相似文献   

8.
During the total solar eclipse of 2009, a week-long campaign was conducted in the Indian sub-continent to study the low-latitude D-region ionosphere using the very low frequency (VLF) signal from the Indian Navy transmitter (call sign: VTX3) operating at 18.2 kHz. It was observed that in several places, the signal amplitude is enhanced while in other places the amplitude is reduced. We simulated the observational results using the well known Long Wavelength Propagation Capability (LWPC) code. As a first order approximation, the ionospheric parameters were assumed to vary according to the degree of solar obscuration on the way to the receivers. This automatically brought in non-uniformity of the ionospheric parameters along the propagation paths. We find that an assumption of 4 km increase of lower ionospheric height for places going through totality in the propagation path simulate the observations very well at Kathmandu and Raiganj. We find an increase of the height parameter by h=+3.0h=+3.0 km for the VTX-Malda path and h=+1.8h=+1.8 km for the VTX-Kolkata path. We also present, as an example, the altitude variation of electron number density throughout the eclipse time at Raiganj.  相似文献   

9.
We explore the capabilities of the future space science mission IXO (International X-ray Observatory) for obtaining cosmological redshifts of distant Active Galactic Nuclei (AGNs) using the X-ray data only. We first find in which regions of the X-ray luminosity (LX) versus redshift (z) plane the weak but ubiquitous Fe Kα narrow emission line can deliver an accurate redshift (δz < 5%) as a function of exposure time, using a CCD-based Wide Field Imager (IXO/WFI) as the one baselined for IXO. Down to a 2–10 keV X-ray flux of 10−14 erg cm−2 s−1 IXO/WFI exposures of 100 ks, 300 ks and 1 Ms will deliver 20%, 40% and 60% of the redshifts. This means that in a typical 18′ × 18′ IXO/WFI field of view, 4, 10 and 25 redshifts will be obtained for free from the X-ray data alone, spanning a wide range up to z ∼ 2–3 and fairly sampling the real distribution. Measuring redshifts of fainter sources will indeed need spectroscopy at other wavebands.  相似文献   

10.
We have analysed a sample of 328 time-integrated GRB prompt emission spectra taken via the Konus instrument on board the US GGS-Wind spacecraft between 2002 and 2004 using a couple of two-components models, Cut-off Power Law (CPL) + Power Law (PL) and blackbody (BB) + PL. The spectra show clear deviation from the Band function. The PL term is interpreted as the low energy tail of a nonthermal emission mechanism. The distributions of corresponding index β give values β < −2/3 consistent with synchrotron and synchrotron self-Compton mechanisms. The distribution of low energy index α associated with the CPL term shows clear discordance with synchrotron models for 31.4% of the analysed GRBs with values exceeding that for the line of death, α = −2/3. Then, a set of nonthermal radiation mechanisms producing harder slopes, i.e., α > −2/3, are presented and discussed. For the remaining majority (68.6%) of GRBs with CPL index α < −2/3, we show that optically thin synchrotron produced by a power law electron distribution of type, N(γ) ∼ γp, γ1 < γ < γ2, for finite energy range (γ2 ≠ ∞) is a likely emission mechanism with α ∼−(p + 1)/2 in the frequency range ν1 ? ν ? ν2 (where ν2 = η2ν1 with η = γ2/γ1), such that for p > 1/3, one gets α < −2/3. We also show that corresponding spectra in terms of Fν and νFν functions are peaked around frequency ν2 instead of ν1, respectively for p < 1 and p < 3. Besides, thermal emission is examined taking a single Planck function for fitting the low energy range. It can be interpreted as an early emission from the GRB fireball photosphere with observed mean temperature, kT′ ∼ 16.8 keV. Furthermore, we have performed a statistical comparison between the CPL + PL and BB + PL models finding comparable χ2-values for an important fraction of GRBs, which makes it difficult to distinguish which model and specific radiation mechanism (possible thermal or nonthermal γ-ray emissions) are best suitable for describing the reported data. Therefore, additional information for those bursts, such as γ-ray polarization, would be highly desirable in future determinations of GRBs observational data.  相似文献   

11.
We present medium resolution near-infrared host galaxy spectra of low redshift quasars, PG 0844+3490844+349 (z = 0.064), PG 1226+0231226+023 (z = 0.158), and PG 1426+0151426+015 (z = 0.086). The observations were done by using the Infrared Camera and Spectrograph (IRCS) at the Subaru 8.2 m telescope. The full width at half maximum of the point spread function was about 0.3 arcsec by operations of an adaptive optics system, which can effectively resolve the quasar spectra from the host galaxy spectra. We spent up to several hours per target and developed data reduction methods to reduce the systematic noises of the telluric emissions and absorptions. From the obtained spectra, we identified absorption features of Mg I (1.503 μm), Si I (1.589 μm) and CO (6-3) (1.619 μm), and measured the velocity dispersions of PG 0844+3490844+349 to be 132 ± 110 km s−1 and PG 1426+0151426+015 to be 264 ± 215 km s−1. By using an MBH–σMBHσ relation of elliptical galaxies, we derived the black hole (BH) mass of PG 0844+3490844+349, log(MBH/M)=7.7±5.5log(MBH/M)=7.7±5.5 and PG 1426+015,log(MBH/M)=9.0±7.51426+015,log(MBH/M)=9.0±7.5. These values are consistent with the BH mass values from broad emission lines with an assumption of a virial factor of 5.5.  相似文献   

12.
In the frame of the European Space Agency (ESA) project called “Biology and Physics in Space”, the returning satellite, Foton-M2, carried an open-to-space exposure platform outside of the satellite body, called as BIOPAN-5, loaded with exo-biological experiments and facilities for radiation dosimetry (RADO). One of the RADO experiments was dedicated to the detection of the primary galactic cosmic rays (GCR) and secondary neutrons by a track etch detector stack. The daily absorbed dose (D) and dose equivalent (H) were calculated from the experimental LET spectra (LET > 10 keV/μm). Under a shielding of ∼2.8 g/cm2 the averaged H was found to be 658 ± 8 μSv/d, with a quality factor (Q) of 6.2 ± 1.2. The LET spectra showed a local peak at ∼105 keV/μm suggesting that the majority of tracks were created by trapped protons as it has been predicted by calculations. The low LET dose of the cosmic radiation was determined by 4 TLD stacks, and the total dose was found to be 795 ± 14 μSv/d.  相似文献   

13.
The measurements of aerosol optical properties were carried out during April 2006 to March 2011 over Mohal (31.9°N, 77.12°E) in the northwestern Indian Himalaya, using the application of ground-based Multi-wavelength Radiometer (MWR) and space-born Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensors. The average (±standard deviation) values of aerosol optical depth (AOD) at 500 nm, Ångström exponent and turbidity coefficient during the entire measurement period were 0.25 ± 0.09, 1.15 ± 0.42 and 0.12 ± 0.06 respectively. About 86% AOD values retrieved from MODIS remote sensor were found within an uncertainty limit (Δτ = ±0.05 ± 0.15τ). In general, the MWR derived AOD values were higher than that of MODIS retrieval with absolute difference ∼0.02. During the entire period of measurement space-born MODIS remote sensor and ground-based MWR observation showed good correspondence with significant correlation coefficient ∼0.78 and root mean square difference ∼0.06. For daily observations the relative difference between these two estimates stood less than 9%. However, satellite-based and ground-based observation showed good correspondence, but further efforts still needed to eliminate systematic errors in the existing MODIS algorithm.  相似文献   

14.
A new and original stereo imaging method is introduced to measure the altitude of the OH nightglow layer and provide a 3D perspective map of the altitude of the layer centroid. Near-IR photographs of the OH layer are taken at two sites separated by a 645 km distance. Each photograph is processed in order to provide a satellite view of the layer. When superposed, the two views present a common diamond-shaped area. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a normalized cross-correlation coefficient (NCC). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in July 2006 in Peru. The images were taken simultaneously at Cerro Cosmos (12°09′08.2″ S, 75°33′49.3″ W, altitude 4630 m) close to Huancayo and Cerro Verde Tellolo (16°33′17.6″ S, 71°39′59.4″ W, altitude 2272 m) close to Arequipa. 3D maps of the layer surface were retrieved and compared with pseudo-relief intensity maps of the same region. The mean altitude of the emission barycenter is located at 86.3 km on July 26. Comparable relief wavy features appear in the 3D and intensity maps. It is shown that the vertical amplitude of the wave system varies as exp (Δz/2H) within the altitude range Δz = 83.5–88.0 km, H being the scale height. The oscillatory kinetic energy at the altitude of the OH layer is comprised between 3 × 10−4 and 5.4 × 10−4 J/m3, which is 2–3 times smaller than the values derived from partial radio wave at 52°N latitude.  相似文献   

15.
As ASTROD I travels through space, its test mass will accrue charge due to exposure of the spacecraft to high-energy particles. This test mass charge will result in Coulomb forces between the test mass and the surrounding electrodes. In earlier work, we have used the GEANT 4 toolkit to simulate charging of the ASTROD test mass due to cosmic-ray protons of energies between 0.1 and 1000 GeV at solar maximum and at solar minimum. Here we use GEANT 4 to simulate the charging process due to solar energetic particle events and interplanetary electrons. We then estimate the test mass acceleration noise due to these fluxes. The predicted charging rates range from 2247 e+/s to 47,055 e+/s, at peak intensity, for the four largest SEP events in September and October 1989. Although the noise due to charging exceeds the ASTROD I budget for the two larger events, it can be suppressed through continuous discharging. The acceleration noise during the two small events is well below the design target. The charging rate of the ASTROD I test mass due to interplanetary electrons in this simulation is about −11% of the cosmic-ray protons at solar minimum, and over −37% at solar maximum. In addition to the Monte Carlo uncertainty, an error of ±30% in the net charging rates should be added to account for uncertainties in the spectra, physics models and geometry implementations.  相似文献   

16.
Current measurements from DIARAD/VIRGO, PMO6V/VIRGO and ACRIM3 radiometers are of the same order of magnitude, but differ from TIM/SORCE by about 4.5 W m−2. This difference is higher than the sum of the claimed individual absolute uncertainties of the instruments. In this context, the SOLAR payload on the International Space Station embarks the SOVIM package. We give the results of the differential absolute radiometer DIARAD/SOVIM and discuss its associated uncertainties. Compared to DIARAD/VIRGO, all possible efforts have been made to improve the absolute accuracy. Substantial progress has been made in the aperture area and electrical power measurements. The measured TSI value from the left channel of DIARAD/SOVIM during three days of June 2008 is 1364.50 ± 1.38 W m−2 (Total) or ±0.49 W m−2 (if we combine the individual contributions in quadrature). The right channel gives 1364.75 W m−2 with the same uncertainties. These values are about 1.2 W m−2 lower than DIARAD/VIRGO and about 4 W m−2 higher than TIM/SORCE. The difference between the left and right channels measurements is as low as 0.25 W m−2 which is within the improved uncertainty limits.  相似文献   

17.
18.
Plants intended to be included in the photosynthesizing compartment of the bioregenerative life support system (BLSS) need to be studied in terms of both their production parameters under optimal conditions and their tolerance to stress factors that might be caused by emergency situations. The purpose of this study was to investigate tolerance of chufa (Cyperus esculentus L.) plants to the super-optimal air temperature of 45 ± 1 °C as dependent upon PAR (photosynthetically active radiation) intensity and the duration of the exposure to the stress factor. Chufa plants were grown hydroponically, on expanded clay, under artificial light. The nutrient solution was Knop’s mineral medium. Until the plants were 30 days old, they had been grown at 690 μmol m−2 s−1 PAR and air temperature 25 °C. Thirty-day-old plants were exposed to the temperature 45 °C for 6 h, 20 h, and 44 h at PAR intensities 690 μmol m−2 s−1 and 1150 μmol m−2 s−1. The exposure to the damaging air temperature for 44 h at 690 μmol m−2 s−1 PAR caused irreversible damage to PSA, resulting in leaf mortality. In chufa plants exposed to heat shock treatment at 690 μmol m−2 s−1 PAR for 6 h and 20 h, respiration exceeded photosynthesis, and CO2 release in the light was recorded. Functional activity of photosynthetic apparatus, estimated from parameters of pulse-modulated chlorophyll fluorescence in Photosystem 2 (PS 2), decreased 40% to 50%. After the exposure to the stress factor was finished, functional activity of PSA recovered its initial values, and apparent photosynthesis (Papparent) rate after a 20-h exposure to the stress factor was 2.6 times lower than before the elevation of the temperature. During the first hours of plant exposure to the temperature 45 °C at 1150 μmol m−2 s−1 PAR, respiration rate was higher than photosynthesis rate, but after 3–4 h of the exposure, photosynthetic processes exceeded oxidative ones and CO2 absorption in the light was recorded. At the end of the 6-h exposure, Papparent rate was close to that recorded prior to the exposure, and no significant changes were observed in the functional activity of PSA. At the end of the 20-h exposure, Papparent rate was close to its initial value, but certain parameters of the functional activity of PSA decreased 25% vs. their initial values. During the repair period, the parameters of external gas exchange recovered their initial values, and parameters of pulse-modulated chlorophyll fluorescence were 20–30% higher than their initial values. Thus, exposure of chufa plants to the damaging temperature of the air for 20 h did not cause any irreversible damage to the photosynthetic apparatus of plants at either 690 μmol m−2 s−1 or 1150 μmol m−2 s−1 PAR, and higher PAR intensity during the heat shock treatment enhanced heat tolerance of the plants.  相似文献   

19.
In the framework of satellite-only gravity field modeling, satellite laser ranging (SLR) data is typically exploited to recover long-wavelength features. This contribution provides a detailed discussion of the SLR component of GOCO02S, the latest release of combined models within the GOCO series. Over a period of five years (January 2006 to December 2010), observations to LAGEOS-1, LAGEOS-2, Ajisai, Stella, and Starlette were analyzed. We conducted a series of closed-loop simulations and found that estimating monthly sets of spherical harmonic coefficients beyond degree five leads to exceedingly ill-posed normal equation systems. Therefore, we adopted degree five as the spectral resolution for real data analysis. We compared our monthly coefficient estimates of degree two with SLR and Gravity Recovery and Climate Experiment (GRACE) time series provided by the Center for Space Research (CSR) at Austin, Texas. Significant deviations in C20 were noted between SLR and GRACE; the agreement is better for the non-zonal coefficients. Fitting sinusoids together with a linear trend to our C20 time series yielded a rate of (−1.75 ± 0.6) × 10−11/yr; this drift is equivalent to a geoid change from pole to equator of 0.35 ± 0.12 mm/yr or an apparent Greenland mass loss of 178.5 ± 61.2 km3/yr. The mean of all monthly solutions, averaged over the five-year period, served as input for the satellite-only model GOCO02S. The contribution of SLR to the combined gravity field model is highest for C20, and hence is essential for the determination of the Earth’s oblateness.  相似文献   

20.
Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2–4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts–Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40–50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号