首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MICROSCOPE mission is fully dedicated to the in-orbit test of the Universality of free fall, the so-called Weak Equivalence Principle (WEP), with an expected accuracy better than 10−15. The test principle consists in comparing the accelerations of two proof masses of different composition in the Earth gravitational field. The payload embarks two pairs of test-masses made of Platinum Rhodium and Titanium alloys at the core of two dedicated coaxial electrostatic accelerometers. These instruments are under qualification for a launch in 2016.  相似文献   

2.
The Satellite Test of the Equivalence Principle (STEP) will advance experimental limits on violations of Einstein’s Equivalence Principle (EP) from their present sensitivity of 2 parts in 10131013 to 1 part in 10181018 through multiple comparison of the motions of four pairs of test masses of different compositions in an earth-orbiting drag-free satellite. Dimensional arguments suggest that violations, if they exist, should be found in this range, and they are also suggested by leading attempts at unified theories of fundamental interactions (e.g., string theory) and cosmological theories involving dynamical dark energy. Discovery of a violation would constitute the discovery of a new force of nature and provide a critical signpost toward unification. A null result would be just as profound, because it would close off any possibility of a natural-strength coupling between standard-model fields and the new light degrees of freedom that such theories generically predict (e.g., dilatons, moduli, quintessence). STEP should thus be seen as the intermediate-scale component of an integrated strategy for fundamental physics experiments that already includes particle accelerators (at the smallest scales) and supernova probes (at the largest). The former may find indirect evidence for new fields via their missing-energy signatures, and the latter may produce direct evidence through changes in cosmological equation of state—but only a gravitational experiment like STEP can go further and reveal how or whether such a field couples to the rest of the standard model. It is at once complementary to the other two kinds of tests, and a uniquely powerful probe of fundamental physics in its own right.  相似文献   

3.
Deep space laser ranging missions like ASTROD I (Single-Spacecraft Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD, together with astrometry missions like GAIA and LATOR will be able to test relativistic gravity to an unprecedented level of accuracy. More precisely, these missions will enable us to test relativistic gravity to 10-7–10-910-710-9 of the size of relativistic (post-Newtonian) effects, and will require second post-Newtonian approximation of relevant theories of gravity. The first post-Newtonian approximation is valid to 10-610-6 and the second post-Newtonian approximation is valid to 10-1210-12 in terms of post-Newtonian effects in the solar system. The scalar-tensor theory is widely discussed and used in tests of relativistic gravity, especially after the interests in inflation models and in dark energy models. In the Lagrangian, intermediate-range gravity term has a similar form as cosmological term. Here we present the full second post-Newtonian approximation of the scalar-tensor theory including viable examples of intermediate-range gravity. We use Chandrasekhar’s approach to derive the metric coefficients and the equation of the hydrodynamics governing a perfect fluid in the second post-Newtonian approximation in scalar-tensor theory; all terms inclusive of O(c-4)O(c-4) are retained consistently in the equations of motion.  相似文献   

4.
This paper provides a useful new method to determine minimum and maximum range of values for the degree and order of the geopotential coefficients required for simulations of orbits of satellites around the Earth. The method consists in a time integration of the perturbing acceleration coming from each harmonic of the geopotential during a time interval T. More precisely, this integral represents the total velocity contribution of a specific harmonic during the period T  . Therefore, for a pre-fixed minimum contribution, for instance 1×10-81×10-8 m/s during the period of time T, any harmonic whose contribution is below this value can, safely, be neglected. This fact includes some constraints in the degree and order of the terms which are present in the geopotential formula, saving computational efforts compared to the integration of the full model. The advantage of this method is the consideration of other perturbations in the dynamics (we consider the perturbations of the Sun, the Moon, and the direct solar radiation pressure with eclipses), since these forces affect the value of the perturbation of the geopotential, because these perturbations depend on the trajectory of the spacecraft, that is dependent on the dynamical model used. In this paper, we work with quasi-circular orbits and we present several simulations showing the bounds for the maximum degree and order (M) that should be used in the geopotential for different situations, e. g., for a satellite near 500 km of altitude (like the GRACE satellites at the beginning of their mission) we found 35?M?19835?M?198 for T=1T=1 day. We analyzed the individual contribution of the second order harmonic (J2J2) and we use its behavior as a parameter to determine the lower limit of the number of terms of the geopotential model. In order to test the accuracy of our truncated model, we calculate the mean squared error between this truncated model and the “full” model, using the CBERS (China-Brazil Earth Resources Satellite) satellite in this test.  相似文献   

5.
We study the propagation of energetic particles, accelerated by interplanetary shock waves, upstream of the shock. By using the appropriate propagator, we show that in the case of superdiffusive transport, the time profile of particles accelerated at a traveling planar shock is a power-law with slope 0<γ<10<γ<1, at variance with the exponential profile obtained for normal diffusion. By analyzing data sets of interplanetary shocks in the solar wind observed by the Ulysses and the Voyager 2 spacecraft, we find that the time profiles of energetic electrons correspond to power-laws, with slopes γ?0.30–0.98γ?0.300.98, implying a mean square displacement 〈Δx2〉∝tαΔx2tα, with α=2-γ>1α=2-γ>1, i.e., superdiffusion. In addition, the propagation of ions is also superdiffusive, with α=1.07–1.13α=1.071.13.  相似文献   

6.
We present our first results from laboratory experiments on a binary-shaped checkerboard mask coronagraph that was fitted inside a vacuum chamber for the development of skills to the direct observation of extra-solar planets. The aim of this work was to utilize a vacuum chamber for our coronagraph experiments in order to achieve an environment with higher thermal stability and which is free from air turbulence. We also aimed to evaluate and improve the performance of such a system consisting of a vacuum chamber with a coronagraph set inside the chamber. Both the raw contrast and the contrast after point spread function (PSF) subtraction are evaluated. We sited the vacuum chamber in a clean room, and we installed an optical fiber coupled to a visible He–Ne laser, appropriate coronagraph optics, a temperature sensor and heaters in the chamber. This provided a vacuum environment and a temperature-controlled environment with a visible light source, and was shown to improve the stability of the coronagraph. A contrast of 1.7×10-71.7×10-7 was achieved for the raw coronagraphic images by analyzing the areal mean of all of the observed dark regions. A contrast of 7.3×10-97.3×10-9 was achieved for the PSF subtraction by areal variance (1σ) of all of the observed dark regions. Speckles were a major limiting factor throughout the dark regions of both the raw images and the PSF subtracted images. The application of PSF subtraction for the Space Infrared telescope for Cosmology and Astrophysics (SPICA) and for other platforms is discussed.  相似文献   

7.
During the total solar eclipse of 2009, a week-long campaign was conducted in the Indian sub-continent to study the low-latitude D-region ionosphere using the very low frequency (VLF) signal from the Indian Navy transmitter (call sign: VTX3) operating at 18.2 kHz. It was observed that in several places, the signal amplitude is enhanced while in other places the amplitude is reduced. We simulated the observational results using the well known Long Wavelength Propagation Capability (LWPC) code. As a first order approximation, the ionospheric parameters were assumed to vary according to the degree of solar obscuration on the way to the receivers. This automatically brought in non-uniformity of the ionospheric parameters along the propagation paths. We find that an assumption of 4 km increase of lower ionospheric height for places going through totality in the propagation path simulate the observations very well at Kathmandu and Raiganj. We find an increase of the height parameter by h=+3.0h=+3.0 km for the VTX-Malda path and h=+1.8h=+1.8 km for the VTX-Kolkata path. We also present, as an example, the altitude variation of electron number density throughout the eclipse time at Raiganj.  相似文献   

8.
9.
An ion chemistry model is used to investigate the negative chlorine ion chemistry of the mesosphere for quiet ionospheric conditions. Model results are presented for high latitudes in February as well as for the equator in Summer. For nighttime, Cl-Cl-, Cl-Cl-(HCl), and NO3(HCl) are the most abundant chlorine anions in the mesosphere. The concentration of ClO3 depends significantly on its stability against collision-induced dissociation. In contrast to previous model predictions, the abundance of Cl-(H2O)Cl-(H2O) is small. For daytime, photoelectron detachment and photodissociation have pronounced impact on the negative chlorine ion chemistry in the mesosphere. The abundance of all anion cluster is considerably smaller than at night. While Cl-Cl- decreases in the upper mesosphere, its abundance increases at lower altitudes.  相似文献   

10.
11.
12.
Space debris: Assessing risk and responsibility   总被引:1,自引:0,他引:1  
We model the orbital debris environment by a set of differential equations with parameter values that capture many of the complexities of existing three-dimensional simulation models. We compute the probability that a spacecraft gets destroyed in a collision during its operational lifetime, and then define the sustainable risk level as the maximum of this probability over all future time. Focusing on the 900- to 1000-km altitude region, which is the most congested portion of low Earth orbit, we find that – despite the initial rise in the level of fragments – the sustainable risk remains below 10-310-3 if there is high (>98%) compliance to the existing 25-year postmission deorbiting guideline. We quantify the damage (via the number of future destroyed operational spacecraft) generated by past and future space activities. We estimate that the 2007 FengYun 1C antisatellite weapon test represents ≈1%1% of the legacy damage due to space objects having a characteristic size of ?10?10 cm, and causes the same damage as failing to deorbit 2.6 spacecraft after their operational life. Although the political and economic issues are daunting, these damage estimates can be used to help determine one-time legacy fees and fees on future activities (including deorbit noncompliance), which can deter future debris generation, compensate operational spacecraft that are destroyed in future collisions, and partially fund research and development into space debris mitigation technologies. Our results need to be confirmed with a high-fidelity three-dimensional model before they can provide the basis for any major decisions made by the space community.  相似文献   

13.
14.
A puzzling observation of solar wind MHD turbulence is the often seen Kolmogorov scaling of k-5/3k-5/3, even though the solar wind MHD turbulence is dominated by Alfvénic fluctuations. Recently Li et al. (2011) proposed that the presence of current sheets may be the cause of the Kolmogorov scaling. Here, using a cell model of the solar wind we examine the effect of current sheets on the power spectrum of the solar wind magnetic field. We model the solar wind as multiple cells separated by current sheets. We prescribe the spectra of turbulent magnetic field in individual cells as IK-like and examine the spectra along trajectories that cross multiple boundaries. We find that these spectra become softer and are consistent with the Kolmogorov-scaling. Our finding supports our recent proposal of Li et al. (2011).  相似文献   

15.
Radiative and collisional constants of excited atoms contain the matrix elements of the dipole transitions and when they are blocked one can expect occurring a number of interesting phenomena in radiation-collisional kinetics. In recent astrophysical studies of IR emission spectra it was revealed a gap in the radiation emitted by Rydberg atoms (RA  ) with values of the principal quantum number of n≈10n10. Under the presence of external electric fields a rearrangement of RA emission spectra is possible to associate with manifestations of the Stark effect. The threshold for electric field ionization of RA   is E≈3·104E3·104 V/cm for states with n>10n>10. This means that the emission of RA   with n≥10n10 is effectively blocked for such fields. In the region of lower electric field intensities the double Stark resonance (or Förster resonance) becomes a key player. On this basis it is established the fact that the static magnetic or electric fields may strongly affect the radiative constants of optical transitions in the vicinity of the Föster resonance resulting, for instance, in an order of magnitude reduction of the intensity in some lines. Then, it is shown in this work that in the atmospheres of celestial objects lifetimes of comparatively long-lived RA states and intensities of corresponding radiative transitions can be associated with the effects of dynamic chaos via collisional ionization. The Föster resonance allows us to manipulate the random walk of the Rydberg electron (RE) in the manifold of quantum levels and hence change the excitation energies of RA, which lead to anomalies in the IR spectra.  相似文献   

16.
17.
18.
We present medium resolution near-infrared host galaxy spectra of low redshift quasars, PG 0844+3490844+349 (z = 0.064), PG 1226+0231226+023 (z = 0.158), and PG 1426+0151426+015 (z = 0.086). The observations were done by using the Infrared Camera and Spectrograph (IRCS) at the Subaru 8.2 m telescope. The full width at half maximum of the point spread function was about 0.3 arcsec by operations of an adaptive optics system, which can effectively resolve the quasar spectra from the host galaxy spectra. We spent up to several hours per target and developed data reduction methods to reduce the systematic noises of the telluric emissions and absorptions. From the obtained spectra, we identified absorption features of Mg I (1.503 μm), Si I (1.589 μm) and CO (6-3) (1.619 μm), and measured the velocity dispersions of PG 0844+3490844+349 to be 132 ± 110 km s−1 and PG 1426+0151426+015 to be 264 ± 215 km s−1. By using an MBH–σMBHσ relation of elliptical galaxies, we derived the black hole (BH) mass of PG 0844+3490844+349, log(MBH/M)=7.7±5.5log(MBH/M)=7.7±5.5 and PG 1426+015,log(MBH/M)=9.0±7.51426+015,log(MBH/M)=9.0±7.5. These values are consistent with the BH mass values from broad emission lines with an assumption of a virial factor of 5.5.  相似文献   

19.
20.
Satellite gravity gradiometry has been applied in GOCE mission to obtain higher harmonics of the Earth’s gravity mapping. In-orbit results showed that the precision of GOCE gradiometry achieved a level of 10–20 mE/Hz1/2 in the bandwidth of 38–100 mHz, and the major error source came from the intrinsic noise of the core sensor electrostatic accelerometer. Two schemes for improving sensitivity of such accelerometer are presented by optimizing the parameters to reduce the dynamic range and choosing the heavier proof mass to suppress the thermal noise limited by the discharging gold wire. As a result, an accelerometer with a better resolution of 6.6×6.6×10−13 m/s2/Hz1/2 could be developed, and then a precision of 3 mE/Hz1/2, corresponding to a spatial resolution of about 78 km half wavelength, is achievable for the future satellite gradiometric mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号