首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.  相似文献   

2.
Growing plants to facilitate life in outer space, for example on the International Space Station (ISS) or at planned deep-space human outposts on the Moon or Mars, has received much attention with regard to NASA’s advanced life support system research. With the objective of in situ resource utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions. Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air permeability characteristics of six plant growth substrates for potential applications in space, including two terrestrial analogs for lunar and Martian soils and four particulate substrates widely used in reduced gravity experiments. To simulate reduced gravity water characteristics, the predictions for ground-based measurements (1 − g) were scaled to two reduced gravity conditions, Martian gravity (0.38 − g) and lunar gravity (0.16 − g), following the observations in previous reduced gravity studies. We described the observed gas diffusivity with a recently developed model combined with a new approach that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using a substrate-structure parameter related to the gaseous phase, we adequately described the air permeability under reduced gravity conditions.  相似文献   

3.
The in situ validation of the satellite altimeter sea surface heights is generally performed either at a few local points directly flown over by the satellites or using the global tide gauge network. A regional in situ calibration method was developed by NOVELTIS in order to monitor the altimeter data quality in a perimeter of several hundred kilometres around a given in situ calibration site. The primary advantage of this technique is its applicability not only for missions flying over dedicated sites but also for missions on interleaved or non repetitive orbits. This article presents the altimeter bias estimates obtained with this method at the Corsican calibration site, for the Jason-1 mission on its nominal and interleaved orbits as well as for the Jason-2 and Envisat missions. The various regional bias estimates (8.2 cm and 7.4 cm for Jason-1 respectively on the nominal and interleaved orbits in Senetosa, 16.4 cm for Jason-2 in Senetosa and 47.0 cm for Envisat in Ajaccio, with an accuracy between 2.5 cm and 4 cm depending on the mission) are compared with the results obtained by the other in situ calibration teams. This comparison demonstrates the coherency at the centimetre level, the stability and the generic character of the method, which would also be of benefit to the new and future altimeter missions such as Cryosat-2, SARAL/AltiKa, Sentinel-3, Jason-3, Jason-CS.  相似文献   

4.
United Nations Space Treaties [10 and 11] require the preservation of planets and of Earth from contamination. All nations part to these Treaties shall take measures to prevent forward and backward contamination during missions exploring our solar system. As observer for the United Nations Committee on Peaceful Uses of Outer Space, the COSPAR (Committee of Space Research) defines and handles the applicable policy and proposes recommendations to Space Agencies [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005. http://www.cosparhq.org/scistr/PPPolicy.htm.]. The goal is to protect celestial bodies from terrestrial biological contamination as well as to protect the Earth environment from an eventual biohazard which may be carried by extraterrestrial samples or by space systems returning to Earth. According to the applicable specifications, including in our case the French requirements [CNES, System Safety. Planetary Protection Requirements. Normative referential CNES RNC-CNES-R-14, CNES Toulouse, ed. 4, 04 October 2002.], the prevention of forward contamination is accomplished by reducing the bioburden on space hardware to acceptable, prescribed levels, including in some instances system sterilization, assembling and integrating the appropriate spacecraft systems in cleanrooms of appropriate biological cleanliness, avoiding or controlling any recontamination risk, and limiting the probability impact of space systems. In order to prepare for future exploration missions [Debus, A., Planetary protection: organization requirements and needs for future planetary exploration missions, ESA conference publication SP-543, pp 103–114, 2003.], and in particular for missions to Mars requiring to control the spacecraft bioburden, a test program has been developed to evaluate the biological contamination under the fairing of the Ariane 5 launcher.  相似文献   

5.
The health risks associated with exposure to various components of space radiation are of great concern when planning manned long-term interplanetary missions, such as future missions to Mars. Since it is not possible to measure the radiation environment inside of human organs in deep space, simulations based on radiation transport/interaction codes coupled to phantoms of tissue equivalent materials are used. However, the calculated results depend on the models used in the codes, and it is therefore necessary to verify their validity by comparison with measured data. The goal of this paper is to compare absorbed doses obtained in the MATROSHKA-R experiment performed at the International Space Station (ISS) with simulations performed with the three-dimensional Monte Carlo Particle and Heavy-Ion Transport code System (PHITS). The absorbed dose was measured using passive detectors (packages of thermoluminescent and plastic nuclear track detectors) placed on the surface of the spherical tissue equivalent phantom MATROSHKA-R, which was exposed aboard the ISS in the Service Zvezda Module from December 2005 to September 2006. The data calculated by PHITS assuming an ISS shielding of 3 g/cm2 and 5 g/cm2 aluminum mass thickness were in good agreement with the measurements. Using a simplified geometrical model of the ISS, the influence of variations in altitude and wall mass thickness of the ISS on the calculated absorbed dose was estimated. The uncertainties of the calculated data are also discussed; the relative expanded uncertainty of absorbed dose in phantom was estimated to be 44% at a 95% confidence level.  相似文献   

6.
Creation of optimal sanitary–hygienic conditions is a prerequisite for good health and performance of crews on extended space missions. There is a rich assortment of associated means, methods and equipment developed and experimentally tested in orbital flights. However, over a one-year period a crew of three uses up about 800 kg of ground-supplied wet wipes and towels for personal needs. The degree of closure of life support systems for long-duration orbital flights should be maximized, particularly for interplanetary missions, which exclude any possibility of re-supply. Washing with regenerated water is the ultimate sanitary–hygienic goal. That is why it is so important to design devices for crew bathing during long-term space missions. Investigations showed that regeneration of wash water (WW) using membrane processes (reverse osmosis, nanofiltration etc.), unlike sorption, would not require much additional expendables. A two-stage membrane recovery unit eliminated >85% of permeate from real WW with organic and inorganic selectivity of 82–95%. The two-stage WW recovery unit was tested with artificial and real WW containing detergents available for space crews. Investigations into the ways of doing laundry and drying along with which detergents will be the best fit for space flight are also planned. Testing of a technology for water extraction from used textiles using a conventional period of contact of 1 s or more, showed that the humidity of the outgoing air flow neared 100%. Issues related to designing the next generation of space life support systems should consider the benefits of integrating new sanitary–hygienic technologies, equipment, and methods.  相似文献   

7.
As part of a Bio-regenerative Life Support System (BLSS) for long-term space missions, plants will likely be grown at reduced pressure. This low pressure will minimize structural requirements for growth chambers on missions to the Moon or Mars. However, at reduced pressures the diffusivity of gases increases. This will affect the rates at which CO2 is assimilated and water is transpired through stomata. To understand quantitatively the possible effects of reduced pressure on plant growth, CO2 and H2O transport were calculated for atmospheres of various total pressures (101, 66, 33, 22, 11 kPa) and CO2 concentrations (0.04, 0.1 and 0.18 kPa). The diffusivity of a gas is inversely proportional to total pressure and shows dramatic increases at pressures below 33 kPa (1/3 atm). A mathematical relationship based on the principle of thermodynamics was applied to low pressure conditions and can be used for calculating the transpiration and photosynthesis of plants grown in hypobaria. At 33 kPa total pressure, the stomatal conductance increases by a factor of three with the boundary layer conductance increasing by a factor of ∼1.7, since the leaf conductance is a function of both stomatal and the boundary layer conductance, the overall conductance will increase resulting in significantly higher levels of transpiration as the pressure drops. The conductance of gases is also regulated by stomatal aperture in an inverse relationship. The higher CO2 concentration inside the leaf air space during low pressure treatments may result in higher CO2 assimilation and partial stomata closure, resulting in a decrease in transpiration rate. The results of this analysis offer guidelines for experiments in pressure and high CO2 environments to establish ideal conditions for minimizing transpiration and maximizing the plant biomass yield in BLSS.  相似文献   

8.
Understanding the evolution of solar wind structures in the inner heliosphere as they approach the Earth is important to space weather prediction. From the in situ solar wind plasma and magnetic field measurements of Pioneer Venus Orbiter (PVO) at 0.72 AU (1979–1988), and of Wind/Advanced Composition Explorer (ACE) missions at 1 AU (1995–2004), we identify and characterize two major solar wind structures, stream interaction regions (SIRs) and interplanetary coronal mass ejections (ICMEs). The average percentage of SIRs occurring with shocks increases significantly from 3% to 24% as they evolve from 0.72 to 1 AU. The average occurrence rate, radial extent, and bulk velocity variation of SIRs do not change from 0.72 to 1 AU, while peak pressure and magnetic field strength both decrease with the radial evolution of SIRs. Within the 0.28 AU distance from the orbit of Venus to that of Earth, the average fraction of ICMEs with shocks increases from 49% to 66%, and the typical radial extent of ICMEs expands by about a fraction of 1.4, with peak pressure and magnetic field strength decreasing significantly. The mean occurrence rate and expansion velocity of ICMEs do not change from 0.72 to 1 AU.  相似文献   

9.
The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m−2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.  相似文献   

10.
Radio beacons/IMU integrated navigation for Mars entry   总被引:2,自引:0,他引:2  
High precision entry navigation capability is essential for future Mars pinpoint landing missions, together with the entry guidance and aerodynamic lift control. This paper addresses the issue of Mars entry navigation using inertial measurement unit (IMU) and orbiting or surface radiometric beacons. The range and Doppler information sensed from orbiting or surface radio beacons and the entry vehicle state information derived from IMU are integrated in Unscented Kalman filter to correct the inertial constant bias and suppress the navigation measurement noise. Computer simulations show that the integrated navigation algorithm proposed in this paper can achieve 50 m position error and 2 m/s velocity error, which satisfies the need of future pinpoint Mars landing missions.  相似文献   

11.
ESA technology reference studies are used as a process to identify key technologies and technical challenges of potential future missions not yet in the science programme. This paper reports on the study of the Fundamental Physics Explorer (FPE), a re-usable platform targeted to small missions testing fundamental laws of physics in space. The study addresses three specific areas of interest: special and general relativity tests based on atomic clocks, experiments on the Weak Equivalence Principle (WEP), and studies of Bose–Einstein condensates under microgravity conditions. Starting from preliminary science objectives and payload requirements, three reference missions in the small/medium class range are discussed, based on a re-adaptation of the LISA Pathfinder spacecraft. A 700/3600 km elliptic orbit has been selected to conduct clock tests of special and general relativity, a 700 km circular orbit to perform experiments on the Weak Equivalence Principle and to study Bose–Einstein condensates, each mission being based on a three-axis stabilised spacecraft. It was determined that adaptation of LISA Pathfinder would be required in order to meet the demands of the FPE missions. Moreover it was established that specific payload and spacecraft technology development would be required to realise such a programme.  相似文献   

12.
The dose reduction effects for space radiation by installation of water shielding material (“protective curtain”) of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future.  相似文献   

13.
Radiation hazard for space missions is mainly due to cosmic ray protons, helium nuclei and light ions, whose energy spectrum is maximum around 1 GeV per nucleon but remains non-negligible for energies up to 15 GeV per nucleon. Nuclear reactions induced by high energy protons are often described by intranuclear cascade plus evaporation models. The attention is focused here on the Liège Intranuclear Cascade model (INCL), which has been shown to reproduce fairly well a great deal of experimental data for nucleon-induced reactions in the 200 MeV to 2 GeV range, when coupled with the ABLA evaporation-fission code. In order to extend the model to other conditions relevant for space radiation, three improvements of INCL are under development. They are reported on here. First, the reaction model has been extended to nucleon–nucleus reactions at incident energies up to 15 GeV, mainly by the inclusion of additional pion production channels in nucleon–nucleon collisions during the cascade. Second, a coalescence mechanism for the emission of light charged particles has been implemented recently. Finally, the model has been modified in order to accommodate light ions as projectiles. First results are shown and compared with illustrative experimental data. Implications for issues concerning radiation protection in space are discussed.  相似文献   

14.
A novel ionisation source which uses commercially available Carbon Nano Tube devices is demonstrated as a replacement for a filament based ionisation source in an ion trap mass spectrometer. The carbon nanotube ion source electron emission was characterised and exhibited typical emission of 30 ± 1.7 μA with an applied voltage differential of 300 V between the carbon nanotube tips and the extraction grid. The ion source was tested for longevity and operated under a condition of continuous emission for a period of 44 h; there was an observed reduction in emission current of 26.5% during operation. Spectra were generated by installing the ion source into a Finnigan Mat ITD700 ion trap mass spectrometer; the spectra recorded showed all of the characteristic m/z peaks from m/z 69 to m/z 219. Perfluorotributylamine spectra were collected and averaged contiguously for a period of 48 h with no significant signal loss or peak mass allocation shift. The low power requirements and low mass of this novel ionisation source are considered be of great value to future space missions where mass spectrometric technology will be employed.  相似文献   

15.
The lunar gravity field is a foundation to study the lunar interior structure, and to recover the evolution history of the Moon. It is still an open and key topic for lunar science. For above mentioned reasons, it becomes one of the important scientific objectives of recent lunar missions, such as KAGUYA (SELENE) the Japanese lunar mission and Chang’E-1, the Chinese lunar mission. The Chang’E-1 and the SELENE were successfully launched in 2007. It is estimated that these two missions can fly around the Moon longer than 6 months simultaneously. In these two missions, the Chinese new VLBI (Very Long Baseline Interferometry) network will be applied for precise orbit determination (POD) by using a differential VLBI (D-VLBI) method during the mission period. The same-beam D-VLBI technique will contribute to recover the lunar gravity field together with other conventional observables, i.e. R&RR (Range and Range Rate) and multi-way Doppler. Taking VLBI tracking conditions into consideration and using the GEODYNII/SOVLE software of GSFC/NASA/USA [8 and 10], we simulated the lunar gravity field recovering ability with and without D-VLBI between the Chang’E-1 and SELENE main satellite. The cases of overlapped flying and tracking period of 30 days, 60 days and 90 days have been analyzed, respectively. The results show that D-VLBI tracking between two lunar satellites can improve the gravity field recovery remarkably. The results and methods introduced in this paper will benefit the actual missions.  相似文献   

16.
Analyses of the epidemiological data on the Japanese A-bomb survivors, who were exposed to γ-rays and neutrons, provide most current information on the dose–response of radiation-induced cancer. Since the dose span of main interest is usually between 0 and 1 Gy, for radiation protection purposes, the analysis of the A-bomb survivors is often focused on this range. However, estimates of cancer risk for doses larger than 1 Gy are becoming more important for long-term manned space missions. Therefore in this work, emphasis is placed on doses larger than 1 Gy with respect to radiation-induced solid cancer and leukemia mortality. The present analysis of the A-bomb survivors data was extended by including two extra high-dose categories and applying organ-averaged dose instead of the colon-weighted dose. In addition, since there are some recent indications for a high neutron dose contribution, the data were fitted separately for three different values for the relative biological effectiveness (RBE) of the neutrons (10, 35 and 100) and a variable RBE as a function of dose. The data were fitted using a linear and a linear-exponential dose–response relationship using a dose and dose-rate effectiveness factor (DDREF) of both one and two. The work presented here implies that the use of organ-averaged dose, a dose-dependent neutron RBE and the bending-over of the dose–response relationship for radiation-induced cancer could result in a reduction of radiation risk by around 50% above 1 Gy. This could impact radiation risk estimates for space crews on long-term mission above 500 days who might be exposed to doses above 1 Gy. The consequence of using a DDREF of one instead of two increases cancer risk by about 40% and would therefore balance the risk decrease described above.  相似文献   

17.
Recent discoveries of water ice trapped within lunar topsoil (regolith) have placed a new emphasis on the recovery and utilization of water for future space exploration. Upon heating the lunar ice to sublimation, the resulting water vapor could theoretically transmit through the lunar regolith, to be captured on the surface. As the permeability of lunar regolith is essential to this process, this paper seeks to experimentally determine the permeability and flow characteristics of various gas species through simulated lunar regolith (SLR). Two different types of SLR were compacted and placed into the permeability setup to measure the flow-rate of transmitted gas through the sample. Darcy’s permeability constant was calculated for each sample and gas combination, and flow characteristics were determined from the results. The results show that Darcy’s permeability constant varies with SLR compaction density, and identified no major difference in permeable flow between the several tested gas species. Between the two tested SLR types, JSC-1A was shown to be more permeable than NU-LHT under similar conditions. In addition, a transition zone was identified in the flow when the gas pressure differential across the sample was less than ∼40 kPa.  相似文献   

18.
This paper reviews the medical operations performed on six European astronauts during seven space missions on board the space station Mir. These missions took place between November 1988 and August 1999, and their duration ranged from 14 days to 189 days. Steps of pre-flight medical selection and flight certification are presented. Countermeasures program used during the flight, as well as rehabilitation program following short and long-duration missions are described. Also reviewed are medical problems encountered during the flight, post-flight physiological changes such as orthostatic intolerance, exercise capacity, blood composition, muscle atrophy, bone density, and radiation exposure.  相似文献   

19.
Plants grown on long-term space missions will likely be grown in low pressure environments (i.e., hypobaria). However, in hypobaria the transpiration rates of plants can increase and may result in wilting if the water is not readily replaced. It is possible to reduce transpiration by increasing the partial pressure of CO2 (pCO2), but the effects of pCO2 at high levels (>120 Pa) on the growth and transpiration of plants in hypobaria are not known. Therefore, the effects of pCO2 on the growth and transpiration of radish (Raphanus sativus var. Cherry Bomb II) in hypobaria were studied. The fresh weight (FW), leaf area, dry weight (DW), CO2 assimilation rates (CA), dark respiration rates (DR), and transpiration rates from 26 day-old radish plants that were grown for an additional seven days at different total pressures (33, 66 or 101 kPa) and pCO2 (40 Pa, 100 Pa and 180 Pa) were measured. In general, the dry weight of plants increased with CO2 enrichment and with lower total pressure. In limiting pCO2 (40 Pa) conditions, the transpiration for plants grown at 33 kPa was approximately twice that of controls (101 kPa total pressure with 40 Pa pCO2). Increasing the pCO2 from 40 Pa to 180 Pa reduced the transpiration rates for plants grown in hypobaria and in standard atmospheric pressures. However, for plants grown in hypobaria and high pCO2 (180 Pa) leaf damage was evident. Radish growth can be enhanced and transpiration reduced in hypobaria by enriching the gas phase with CO2 although at high levels leaf damage may occur.  相似文献   

20.
Satellite gravity field missions such as CHAMP, GRACE and GOCE are designed as low Earth orbiting spacecraft (LEO) with orbit heights of about 250–500 km. The challenging mission objectives require a very precise knowledge of the satellite orbit position in space. For these missions precise orbit information is typically provided by GPS satellite-to-satellite tracking (SST) observations supported by satellite laser ranging (SLR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号