首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed 101 Coronal Mass Ejection (CME) events and their associated interplanetary CMEs (ICMEs) and interplanetary (IP) shocks observed during the period 1997–2005 from the list given by Mujiber Rahman et al. (2012). The aim of the present work is to correlate the interplanetary parameters such as, the speeds of IP shocks and ICMEs, CME transit time and their relation with CME parameters near the Sun. Mainly, a group of 10 faster CME events (VINT > 2200 km/s) are compared with a list of 91 normal events of Manoharan et al. (2004). From the distribution diagrams of CME, ICME and IP shock speeds, we note that a large number of events tends to narrow towards the ambient (i.e., background) solar wind speed (∼500 km/s) in agreement with the literature. Also, we found that the IP shock speed and the average ICME speed measured at 1 AU are well correlated. In addition, the IP shock speed is found to be slightly higher than the ICME speed. While the normal events show CME travel time in the range of ∼40–80 h with a mean value of 65 h, the faster events have lower transit time with a mean value of 40 h. The effect of solar wind drag is studied using the correlation of CME acceleration with interplanetary (IP) acceleration and with other parameters of ICMEs. While the mean acceleration values of normal and faster CMEs in the LASCO FOV are 1 m/s2, 18 m/s2, they are −1.5 m/s2 and −14 m/s2 in the interplanetary medium, respectively. The relation between CME speed and IP acceleration for normal and faster events are found to agree with that of  and  except slight deviations for the faster events. It is also seen that the faster events with less travel time face higher negative acceleration (>−10 m/s2) in the interplanetary medium up to 1 AU.  相似文献   

2.
3.
This study performs simulations of interplanetary coronal mass ejection (ICME) propagation in a realistic three-dimensional (3D) solar wind structure from the Sun to the Earth by using the newly developed hybrid code, HAFv.2+3DMHD. This model combines two simulation codes, Hakamada–Akasofu–Fry code version 2 (HAFv.2) and a fully 3D, time-dependent MHD simulation code. The solar wind structure is simulated out to 0.08 AU (18 Rs) from source surface maps using the HAFv.2 code. The outputs at 0.08 AU are then used to provide inputs for the lower boundary, at that location, of the 3D MHD code to calculate solar wind and its evolution to 1 AU and beyond. A dynamic disturbance, mimicking a particular flare’s energy output, is delivered to this non-uniform structure to model the evolution and interplanetary propagation of ICMEs (including their shocks). We then show the interaction between two ICMEs and the dynamic process during the overtaking of one shock by the other. The results show that both CMEs and heliosphere current sheet/plasma sheet were deformed by interacting with each other.  相似文献   

4.
We have studied conditions in interplanetary space, which can have an influence on galactic cosmic ray (CR) and climate change. In this connection the solar wind and interplanetary magnetic field parameters and cosmic ray variations have been compared with geomagnetic activity represented by the equatorial Dst index from the beginning 1965 to the end of 2012. Dst index is commonly used as the solar wind–magnetosphere–ionosphere interaction characteristic. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Because of this CMEs, coronal holes and the solar spot numbers (SSN) do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU. Therefore, the geomagnetic indices have some inestimable advantage as continuous series other the irregular solar wind measurements. We have compared the yearly average variations of Dst index and the solar wind parameters with cosmic ray data from Moscow, Climax, and Haleakala neutron monitors during the solar cycles 20–23. The descending phases of these solar cycles (CSs) had the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations. They also had effects on cosmic rays variations. We show that long-term Dst variations in these solar cycles were correlated with the cosmic ray count rate and can be used for study of CR variations. Global temperature variations in connection with evolution of Dst index and CR variations is discussed.  相似文献   

5.
Using nine years (1995–2003) of solar wind plasma and magnetic field data, solar sunspot number, and geomagnetic activity data, we investigated the geomagnetic activity associated with magnetic clouds (MCs), magnetic cloud-like structures (MCLs), and interplanetary shock waves. Eighty-two MCs and one hundred and twenty-two MCLs were identified by using solar wind and magnetic field data from the WIND mission, and two hundred and sixty-one interplanetary shocks were identified over the period of 1995–2003 in the vicinity of Earth. It is found that MCs are typically more geoeffective than MCLs or interplanetary shocks. The occurrence frequency of MCs is not well correlated with sunspot number. By contrast, both occurrence frequency of MCLs and sudden storm commencements (SSCs) are well correlated with sunspot number.  相似文献   

6.
In this work, we present a study of the coronal mass ejection (CME) dynamics using LASCO coronagraph observations combined with in-situ ACE plasma and magnetic field data, covering a continuous period of time from January 1997 to April 2001, complemented by few extreme events observed in 2001 and 2003. We show, for the first time, that the CME expansion speed correlates very well with the travel time to 1 AU of the interplanetary ejecta (or ICMEs) associated with the CMEs, as well as with their preceding shocks. The events analyzed in this work are a subset of the events studied in Schwenn et al. (2005), from which only the CMEs associated with interplanetary ejecta (ICMEs) were selected. Three models to predict CME travel time to Earth, two proposed by Gopalswamy et al. (2001) and one by Schwenn et al. (2005), were used to characterize the dynamical behavior of this set of events. Extreme events occurred in 2001 and 2003 were used to test the prediction capability of the models regarding CMEs with very high LASCO C3 speeds.  相似文献   

7.
In this article, we study fast shocks at CIR boundaries during an extended interval of 15 consecutive major high speed solar wind streams in 1992–1993. Ulysses was 4–5 AU from the sun. The Abraham-Schrauner shock normal method and the Rankine-Hugoniot relations were used to determine fast shock directions and speeds. Out of 33 potential CIR shocks, 14 were determined to be fast forward shocks (FSs) and 14 were fast reverse shocks (RSs). Of the remaining 5 events, 2 were forward waves and 3 were reverse waves. CIR edges at latitudes below ∼30o were, for the most part, bounded by fast magnetosonic shocks. The forward shocks were generally quasi-perpendicular (average θnBo = 67o). The reverse shocks were more oblique (average θnBo = 52o), but they extended to all angles. Both FSs and RSs had magnetosonic Mach numbers ranging from 1 to 5 or 6. The average Mach numbers were 2.4 and 2.6 for FSs and RSs, respectively. The shock Mach numbers were noted to generally decrease with increasing latitude. The non-shock events or waves were noted to occur preferentially at high (∼−30° to −35°) heliolatitudes where stream-stream interactions were presumably weaker. These results are consistent with expectations, indicating the general accuracy of the Abraham-Schrauner technique.  相似文献   

8.
A solar wind parcel evolves as it moves outward, interacting with the solar wind plasma ahead of and behind it and with the interstellar neutrals. This structure varies over a solar cycle as the latitudinal speed profile and current sheet tilt change. We model the evolution of the solar wind with distance, using inner heliosphere data to predict plasma parameters at Voyager. The shocks which pass Voyager 2 often have different structure than expected; changes in the plasma and/or magnetic field do not always occur simultaneously. We use the recent latitudinal alignment of Ulysses and Voyager 2 to determine the solar wind slowdown due to interstellar neutrals at 80 AU and estimate the interstellar neutral density. We use Voyager data to predict the termination shock motion and location as a function of time.  相似文献   

9.
Estimating the magnetic storm effectiveness of solar and associated interplanetary phenomena is of practical importance for space weather modelling and prediction. This article presents results of a qualitative and quantitative analysis of the probable causes of geomagnetic storms during the 11-year period of solar cycle 23: 1996–2006. Potential solar causes of 229 magnetic storms (Dst ? −50 nT) were investigated with a particular focus on halo coronal mass ejections (CMEs). A 5-day time window prior to the storm onset was considered to track backward the Sun’s eruptions of halo CMEs using the SOHO/LASCO CMEs catalogue list. Solar and interplanetary (IP) properties associated with halo CMEs were investigated and correlated to the resulting geomagnetic storms (GMS). In addition, a comparative analysis between full and partial halo CME-driven storms is established. The results obtained show that about 83% of intense storms (Dst ? −100 nT) were associated with halo CMEs. For moderate storms (−100 nT < Dst ? −50 nT), only 54% had halo CME background, while the remaining 46% were assumed to be associated with corotating interaction regions (CIRs) or undetected frontside CMEs. It was observed in this study that intense storms were mostly associated with full halo CMEs, while partial halo CMEs were generally followed by moderate storms. This analysis indicates that up to 86% of intense storms were associated with interplanetary coronal mass ejections (ICMEs) at 1 AU, as compared to moderate storms with only 44% of ICME association. Many other quantitative results are presented in this paper, providing an estimate of solar and IP precursor properties of GMS within an average 11-year solar activity cycle. The results of this study constitute a key step towards improving space weather modelling and prediction.  相似文献   

10.
As an initial effort to study the evolution of the Venus atmosphere, the influence of the solar wind density and the interplanetary magnetic field (IMF) x component (the x-axis points from Venus towards the Sun) on the O+ ion escape rate from Venus is investigated using a three-dimensional quasi-neutral hybrid (HYB-Venus) model. The HYB-Venus model is first applied to a case of the high-density (100 cm−3) solar wind interaction with Venus selected from the Pioneer Venus Orbiter observations to demonstrate its capability for the study. Two sets of simulations with a wide range of solar wind densities and different IMF x components are then performed. It is found that the O+ ion escape rate increases with increasing solar wind density. The O+ ion escape rate saturates when the solar wind density becomes high (above 100 cm−3). The results also suggest that the IMF x component enhances the O+ ion escape rate, given a fixed IMF component perpendicular to the x-axis. Finally, the results imply a higher ion loss rate for early-Venus, when solar conditions were dramatically different.  相似文献   

11.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock. Voyager 1 crossed this termination shock at ∼94 AU in 2004, while Voyager 2 crossed it in 2007 at a different heliolatitude, about 10 AU closer to the Sun. These different positions of the termination shock confirm the dynamic and cyclic nature of the shock’s position. Observations from the two Voyager spacecraft inside the heliosheath indicate significant differences between them, suggesting that apart from the dynamic nature caused by changing solar activity there also may exist a global asymmetry in the north–south (polar) dimensions of the heliosphere, in addition to the expected nose–tail asymmetry. This relates to the direction in which the heliosphere is moving in interstellar space and its orientation with respect to the interstellar magnetic field. In this paper we focus on illustrating the effects of this north–south asymmetry on modulation of galactic cosmic ray Carbon, between polar angles of 55° and 125°, using a numerical model which includes all four major modulation processes, the termination shock and the heliosheath. This asymmetry is incorporated in the model by assuming a significant dependence on heliolatitude of the thickness of the heliosheath. When comparing the computed spectra between the two polar angles, we find that at energies E < ∼1.0 GeV the effects of the assumed asymmetry on the modulated spectra are insignificant up to 60 AU from the Sun but become increasingly more significant with larger radial distances to reach a maximum inside the heliosheath. In contrast, with E > ∼1.0 GeV, these effects remain insignificant throughout the heliosphere even very close to the heliopause. Furthermore, we find that a higher local interstellar spectrum for Carbon enhances the effects of asymmetric modulation between the two polar angles at lower energies (E < ∼300 MeV). In conclusion, it is found that north–south asymmetrical effects on the modulation of cosmic ray Carbon depend strongly on the extent of the geometrical asymmetry of the heliosheath together with the assumed value of the local interstellar spectrum.  相似文献   

12.
The chance of an Interplanetary Coronal Mass Ejection (ICME) observed by widely-separated spacecraft is rare. However, such an event provides us a good opportunity to study the propagation and evolution of ICMEs in the heliosphere. On day 72 of 1975, an ICME was observed by Helios 1 at 0.3 AU, while a similar solar wind structure was observed by IMP 8 at Earth on day 70 of 1975. On the basis of comparison of the plasma signatures and the transit time from Helios 1 to IMP 8, we hypothesize the observed ICMEs by both spacecraft are resulted from the same active region on the solar surface. A one-dimensional MHD model was used to track the ICME from Helios 1 (0.3 AU) to Earth. The observed plasma profiles and timing are close to those predicted by our MHD model and thus, give the supports to the model.   相似文献   

13.
We review recent Voyager 2 observations in the vicinity of 70 AU. The character of the solar wind plasma data between 2002 and 2003 changed to a regime in which the speed, density and magnetic field magnitude are positively correlated. The average speed of the solar wind at Voyager 2 increased between early 2003 and mid-2004, which we attribute to a return of fast coronal hole flow. We use solar wind data at Earth as input to numerical models which include the effect of pickup ions to model the radial evolution of the solar wind. The model reproduces the basic features of the observations. As a specific example, we investigate the propagation of the Halloween (Oct.–Nov.), 2003 storms in the outer heliosphere. The model predictions are in reasonable agreement with Voyager 2 observations.  相似文献   

14.
根据异常低的质子温度判据,从Heliosl和2飞船等离子体观测数据中(0.3-1AU)识别出大约160个行星际日冕物质抛射事件(ICME),并在统计意义上分析了ICME在内日球空间的传播和演化规律.  相似文献   

15.
We examined polar rain flux observed by STSAT-1 in the northern polar cap and compared it with solar wind parameters. We found that the differential energy spectrum of polar rain was similar to that of the solar wind for the energy range 100 eV – 1 keV, although we cannot rule out the possibility of a small amount of acceleration. On the other hand, the low-energy component of the solar wind showed no correlation and, naturally, the solar wind density had only a weak correlation with the polar rain flux. Polar rain flux in the northern hemisphere is most significant for the condition of the interplanetary magnetic field components Bz < 0, Bx < 0, and By > 0, and in this case it correlated well with the magnitude of By and Bz. For other interplanetary magnetic field conditions, the correlation was insignificant. The results are consistent with those reported previously.  相似文献   

16.
In this paper we research the relationship between solar activity and the weather on Earth. This research is based on the assumption that every ejection of magnetic field energy and particles from the Sun (also known as Solar wind) has direct effects on the Earth’s weather. The impact of coronal holes and active regions on cold air advection (cold fronts, precipitation, and temperature decrease on the surface and higher layers) in the Belgrade region (Serbia) was analyzed. Some active regions and coronal holes appear to be in a geo-effective position nearly every 27 days, which is the duration of a solar rotation. A similar period of repetitiveness (27–29 days) of the passage of the cold front, and maximum and minimum temperatures measured at surface and at levels of 850 and 500 hPa were detected. We found that 10–12 days after Solar wind velocity starts significantly increasing, we could expect the passage of a cold front. After eight days, the maximum temperatures in the Belgrade region are measured, and it was found that their minimum values appear after 12–16 days. The maximum amount of precipitation occurs 14 days after Solar wind is observed. A recurring period of nearly 27 days of different phases of development for hurricanes Katrina, Rita and Wilma was found. This analysis confirmed that the intervals of time between two occurrences of some particular meteorological parameter correlate well with Solar wind and A index.  相似文献   

17.
We develop a three-dimensional (3-D) model of the 27-day variation of galactic cosmic-ray (GCR) intensity with a spatial variation of the solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving the corresponding Maxwell equations with a variable solar wind speed, which reproduces in situ observed experimental data for the time interval to be analyzed (24 August 2007–28 February 2008). We perform model calculations for the GCR intensity using the variable solar wind and the corresponding magnetic field. Results are compatible with experimental data; the correlation coefficient between our model predictions and observed 27-day GCR variation is 0.80 ± 0.05.  相似文献   

18.
Using ACE and SOHO data the origin of quiet-time low-energy particle fluxes at 1 AU is studied in the 23rd solar cycle. One of the selection criteria of quiet-time periods is to demand that H/He < 10 provided that periods with noticeable contribution of remnants of gradual events have been excluded from consideration. Our results suggest different origin of 0.03–3 MeV/nucleon particles – different seed populations accelerated and different acceleration processes. During the ascending, maximum and descending phases of solar activity quiet-time ions consist of coronal particles accelerated to suprathermal energies in about a half of the quiet periods, the rest of quiet-time fluxes originates from particle acceleration in processes similar to those in small impulsive solar flares rich in Fe. At solar minimum the bulk solar wind particles serve as seed population.  相似文献   

19.
Observations of unusually large magnetic fields in the ionosphere indicate periods of maximum stress on Titan’s ionosphere and potentially of the strongest loss rates of ionospheric plasma. During Titan flyby T42, the observed magnetic field attained a maximum value of 37 nT between an altitude of 1200 and 1600 km, about 20 nT stronger than on any other Titan pass and close to five times greater in magnetic pressure. The strong fields occurred near the corotation-flow terminator rather than at the sub-flow point, suggesting that the flow which magnetized the ionosphere was from a direction far from corotation and possibly towards Saturn. Extrapolation of solar wind plasma conditions from Earth to Saturn using the University of Michigan MHD code predicts an enhanced solar wind dynamic pressure at Saturn close to this time. Cassini’s earlier exits from Saturn’s magnetosphere support this prediction because the Cassini Plasma Spectrometer instrument saw a magnetopause crossing three hours before the strong field observation. Thus it appears that Titan’s ionosphere was magnetized when the enhanced solar wind dynamic pressure compressed the Saturnian magnetosphere, and perhaps the magnetosheath magnetic field, against Titan. The solar wind pressure then decreased, leaving a strong fossil field in the ionosphere. When observed, this strong magnetic flux tube had begun to twist, further enhancing its strength.  相似文献   

20.
The paper presents results of our study of dependence of geomagnetic activity from geoeffective parameters taking into account mutual orientation of the interplanetary magnetic field, electric field of the solar wind and geomagnetic moment. We attract a reconnection model elaborated by us made allowance for changes of geometry of the solar wind–magnetosphere interaction during annual and diurnal motions of the Earth. We take as our data base the interplanetary magnetic field and solar wind velocity measured at 1 a.u. at ecliptic plane for the period of 1963–2005 and Kp, Dst, am indices. Taken as a whole a geoeffective parameter suggested by us explains 95% of observed variations of the indices. Changes of the geometric factor determined by mutual orientation of the solar wind electric field and geomagnetic moment explain larger than 75% of observed statistical variations of Dst and am indices. Based on our results we suggest a new explanation of semi-annual and UT variation of geomagnetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号