首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 492 毫秒
1.
The purpose of this study was to evaluate dose–response relationships for the in vivo induction of micronuclei (MN) as a measure of both initial radiation damage and the induction of genomic instability. These measurements were made in mouse blood erythrocytes as a function of radiation dose, radiation quality, time after irradiation, and the genetic background of exposed individuals. Blood samples were collected from two strains of mouse (CBA/CaJ and C57BL/6J) at different times up to 3 months following a whole-body exposure to various doses of 1 GeV/amu 56Fe ions (0, 0.1, 0.5 and 1.0 Gy, at the dose rate of a 1 Gy/min) or 137Cs gamma rays (0, 0.5, 1.0 and 3.0 Gy, at the dose rate of 0.72 Gy/min). Blood-smear slides were stained with acridine orange (AO). The frequencies of MN were measured in mature normochromatic-erythrocytes (MN-NCEs) and in immature polychromatic-erythrocytes (MN-PCEs). Effects of both types of radiation on erythropoiesis were also evaluated. As a measure of cell progression delay, a dose-dependent decrease in numbers of PCEs was observed at day 2 post-exposure in both strains, regardless of radiation quality. Subsequently, the levels of PCEs increased in all exposed mice, reaching control levels (or higher) by day 7 post-exposure. Further, at day 2 after the exposure, there was no increase in the frequency of MN-PCEs in CBA/CaJ mice exposed to 56Fe ions while the frequency of MN-PCEs elevated as a function of dose in the C57BL/6J mice. At day 4, there was no dose related increase in MN-NCEs in either strain of mouse exposed to 137Cs gamma rays. Additionally, at the early sacrifice times (days 2 and 4), 56Fe ions were slightly more effective (per unit dose) in inducing MN-NCEs than 137Cs gamma rays in CBA/CaJ mice. However, there was no increase in the frequency of MN-NCEs at late times after an acute exposure to either type of radiation. In contrast, both types of radiation induced increased MN-PCEs frequencies in irradiated CBA/CaJ mice, but not C57BL/6J mice, at late times post-exposure. This finding indicates the potential induction of genomic instability in hematopoietic cells of CBA/CaJ mice by both types of radiation. The finding also demonstrates the influence of genetic background on radiation-induced genomic instability in vivo.  相似文献   

2.
The Liulin-5 experiment is a part of the international project MATROSHKA-R on the Russian segment of the ISS, which uses a tissue-equivalent spherical phantom equipped with a set of radiation detectors. The objective of the MATROSHKA-R project is to provide depth dose distribution of the radiation field inside the sphere in order to get more information on the distribution of dose in a human body. Liulin-5 is a charged particle telescope using three silicon detectors. It measures time resolved energy deposition spectra, linear energy transfer (LET) spectra, particle flux, and absorbed doses of electrons, protons and heavy ions, simultaneously at three depths along the radius of the phantom. Measurements during the minimum of the solar activity in cycle 23 show that the average absorbed daily doses at 40 mm depth in the phantom are between 180 μGy/day and 220 μGy/day. The absorbed doses at 165 mm depth in the phantom decrease by a factor of 1.6–1.8 compared to the doses at 40 mm depth due to the self-shielding of the phantom from trapped protons. The average dose equivalent at 40 mm depth is 590 ± 32 μSV/day and the galactic cosmic rays (GCR) contribute at least 70% of the total dose equivalent at that depth. Shown is that due to the South Atlantic Anomaly (SAA) trapped protons asymmetry and the direction of Liulin-5 lowest shielding zone the dose rates on ascending and descending nodes in SAA are different. The data obtained are compared to data from other radiation detectors on ISS.  相似文献   

3.
Space radiation has been monitored successfully using the Radiation Risks Radiometer-Dosimeter (R3D) installed at the ESA EXPOSE-R (R3DR) facility outside of the Russian Zvezda module of the International Space Station (ISS) between March 2009 and January 2011. R3DR is a Liulin type spectrometer–dosimeter with a single Si PIN detector 2 cm2 of area and 0.3 mm thick. The R3DR instrument accumulated about 2 million measurements of the absorbed dose rate and flux of 10 s resolution. The total external and internal shielding before the detector of R3DR device is 0.41 g cm−2. The calculated stopping energy of normally incident particles to the detector is 0.78 MeV for electrons and 15.8 MeV for protons. After the Coronal Mass Ejection (CME) at 09:54 UTC on 3 April 2010, a shock was observed at the ACE spacecraft at 0756 UTC on 5 April, which led to a sudden impulse on Earth at 08:26 UTC. Nevertheless, while the magnetic substorms on 5 and 6 of April were moderate; the second largest in history of GOES fluence of electrons with energy >2 MeV was measured. The R3DR data show a relatively small amount of relativistic electrons on 5 April. The maximum dose rate of 2323 μGy day−1 was reached on 7 April; by 9 April, a dose of 6600 μGy was accumulated. By the end of the period on 7 May 2010 a total dose of 11,587 μGy was absorbed. Our data were compared with AE-8 MIN, CRESS and ESA-SEE1 models using SPENVIS and with similar observations on American, Japanese and Russian satellites.  相似文献   

4.
In the framework of “Biology and Physics in Space” project of the European Space Agency (ESA), a returning satellite, Foton-M2, carried an open-to-space sample holder outside of the satellite body, called as BIOPAN-5, loaded with exo-biological experiments and dosemeters for RAdiation DOsimetry (RADO). One of the RADO experiments (Teflon – TLD) was dedicated to dose distribution measurements of the cosmic radiation by thermo-luminescent (TL) technique. It was found that the maximum surface absorbed dose rate, averaged over the first ∼8 mg/cm2 thickness, was ∼2 Gy/d and showed a location dependence due the shading effect of the satellite construction elements. The dose rate decreased nearly by 3 orders of magnitude below 500 mg/cm2.  相似文献   

5.
6.
Long-term analysis of data from two radiation detection instruments on the International Space Station (ISS) shows that the docking of the Space Shuttle drops down the measured dose rates in the region of the South Atlantic Anomaly (SAA) by a factor of 1.5–3. Measurements either by the R3DE detector, which is outside the ISS at the EuTEF facility on the Columbus module behind a shielding of less than 0.45 g cm−2, and by the three detectors of the Liulin-5 particle telescope, which is inside the Russian PEARS module in the spherical tissue equivalent phantom behind much heavier shielding demonstrate that effect. Simultaneously the estimated averaged incident energies of the incoming protons rise up from about 30 to 45 MeV. The effect is explained by the additional shielding against the SAA 30–150 MeV protons, provided by the 78 tons Shuttle to the instruments inside and outside of the ISS. An additional reason is the ISS attitude change (performed for the Shuttle docking) leading to decreasing of dose rates in two of Liulin-5 detectors because of the East–West proton fluxes asymmetry in SAA. The Galactic Cosmic Rays dose rates are practically not affected.  相似文献   

7.
In the frame of the European Space Agency (ESA) project called “Biology and Physics in Space”, the returning satellite, Foton-M2, carried an open-to-space exposure platform outside of the satellite body, called as BIOPAN-5, loaded with exo-biological experiments and facilities for radiation dosimetry (RADO). One of the RADO experiments was dedicated to the detection of the primary galactic cosmic rays (GCR) and secondary neutrons by a track etch detector stack. The daily absorbed dose (D) and dose equivalent (H) were calculated from the experimental LET spectra (LET > 10 keV/μm). Under a shielding of ∼2.8 g/cm2 the averaged H was found to be 658 ± 8 μSv/d, with a quality factor (Q) of 6.2 ± 1.2. The LET spectra showed a local peak at ∼105 keV/μm suggesting that the majority of tracks were created by trapped protons as it has been predicted by calculations. The low LET dose of the cosmic radiation was determined by 4 TLD stacks, and the total dose was found to be 795 ± 14 μSv/d.  相似文献   

8.
The dose reduction effects for space radiation by installation of water shielding material (“protective curtain”) of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future.  相似文献   

9.
A band of enhanced amplitudes which follows a local plasma frequency fn in raw high frequency (HF) noise spectra is usually related to plasma emissions in the upper hybrid band (fn, fu). The enhanced band in question occurs permanently in noise spectra recorded on the Intercosmos-19, APEX and CORONAS satellites in the altitude range of 500 km–3000 km. For moderately magnetized plasma with fn > 2fc (fc – electron gyro frequency), the band occurs below fn determined from the topside sounder and impedance data or from electron beam induced spectra. The simulations of an equivalent circuit composed of a dipole antenna in a cold plasma and its preamplifiers, determined the physical origin of the band as the passive circuit resonance, due to inductive character of the antenna in a frequency band (fc, fu). The resonance spectral content is highly structured due to an inflight variability of the circuit impedances. In this report we analyze the noise and impedance spectra which are the most typical in an auroral zone if fn > fc. We focus attention on determination of local electron plasma density, essential for provisional HF mode classification. We found that the natural plasma emission in the upper hybrid band does not manifest itself as the banded natural emission, which may be used for reliable determination of local plasma frequency in the altitude range of 500–3000 km. The fast magnetosonic mode predominates in the auroral emissions. The broadband and multi banded electromagnetic emissions extending from the fast magnetosonic band well above fn > fc are characteristic for the strong wave activity and are much less frequent.  相似文献   

10.
11.
Ultra High Molecular Weight Polyethylene (UHMWPE) is a polymer widely used as a radiation shielding material in space flight applications and as a bearing material in total joint replacements. As a long chain hydrocarbon based polymer, UHMWPE’s material properties are influenced by radiation exposure, and prior studies show that gamma irradiation is effective for both medical sterilization and increased wear resistance in total joint replacement applications. However, the effects of space flight radiation types and doses on UHMWPE material properties are poorly understood. In this study, three clinically relevant grades of UHMWPE (GUR 1020, GUR 1050, and GUR 1020 blended with Vitamin E) were proton irradiated and tested for differences in material properties. Each of the three types of UHMWPE was irradiated at nominal doses of 0 Gy (control), 5 Gy, 10 Gy, 20 Gy, and 35 Gy. Following irradiation, uniaxial tensile testing and thermal testing using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were performed. Results show small but significant changes in several material properties between the control (0 Gy) and 35 Gy samples, indicating that proton irradiation could have a effect on the long term performance of UHMWPE in both medical and space flight applications.  相似文献   

12.
High Energy Charged Particle Experiment (HECPE) is to measure the fluxes of MeV electrons and tens of MeV protons. The two satellites of KuaFu-B are in the same polar orbit with apogee 7.0RE, perigee 1.8RE. They can sweep large L values and pass through the inner and outer radiation belts. The high energy electrons and protons in the radiation belts are principal sources for failures of satellites and spacecrafts in the Earth orbits. The enhancements of the high energy electrons and protons, so-called energetic particle events, are important phenomena of the Space Weather. The energy ranges monitored by HECPE are 0.3–0.5 MeV, 0.5–1.0 MeV, 1.0–2.0 MeV, and E > 2.0 MeV for electrons, 5–10 MeV, 10–20 MeV, 20–40 MeV, and 40–80 MeV for protons.  相似文献   

13.
In order to test laser ranging possibilities to space debris objects, the Satellite Laser Ranging (SLR) Station Graz installed a frequency doubled Nd:YAG pulse laser with a 1 kHz repetition rate, a pulse width of 10 ns, and a pulse energy of 25 mJ at 532 nm (on loan from German Aerospace Center Stuttgart – DLR). We developed and built low-noise single-photon detection units to enable laser ranging to targets with inaccurate orbit predictions, and adapted our standard SLR software to include a few hundred space debris targets. With this configuration, we successfully tracked – within 13 early-evening sessions of each about 1.5 h – 85 passes of 43 different space debris targets, in distances between 600 km and up to more than 2500 km, with radar cross sections from >15 m2 down to <0.3 m2, and measured their distances with an average precision of about 0.7 m RMS.  相似文献   

14.
The paper presents observation of relativistic electrons. Data are collected by the Radiation Risk Radiometer-Dosimeters (R3D) B2/B3 modifications during the flights of Foton M2/M3 satellites in 2005 and 2007 as well as by the R3DE instrument at the European Technology Exposure Facility (EuTEF) on the Columbus External Payload Adaptor at the International Space Station (ISS) in the period February 20 – April 28, 2008. On the Foton M2/M3 satellites relativistic electrons are observed more frequently than on the ISS because of higher (62.8°) inclination of the orbit. At both Foton satellites the usual duration of the observations are a few minutes long. On the ISS the duration usually is about 1 min or less. The places of observations of high doses due to relativistic electrons are distributed mainly at latitudes above 50° geographic latitude in both hemispheres on Foton M2/M3 satellites. A very high maximum is found in the southern hemisphere at longitudinal range 0°–60°E. At the ISS the maximums are observed between 45° and 52° geographic latitude in both hemispheres mainly at longitudes equatorward from the magnetic poles. The measured absolute maximums of dose rates generated by relativistic electrons are found to be as follows: 304 μGy h−1 behind 1.75 g cm−2 shielding at Foton M2, 2314 μGy h−1 behind 0.71 g cm−2 shielding at Foton M3 and 19,195 μGy h−1 (Flux is 8363 cm−2 s−1) behind les than 0.4 g cm−2 shielding at ISS.  相似文献   

15.
The main long-term objective of the space exploration program is the colonization of the planets of the Solar System. The high cosmic radiation equivalent dose rate represents an inescapable problem for the safe establishment of permanent human settlements on these planets. The unshielded equivalent dose rate on Mars ranges between 100 and 200 mSv/year, depending on the Solar cycle and altitude, and can reach values as high as 360 mSv/year on the Moon. The average annual effective dose on Earth is about 3 mSv, nearly 85% of which comes from natural background radiation, reduced to less than 1 mSv if man-made sources and the internal exposure to Rn daughters are excluded. However, some areas on Earth display anomalously high levels of background radiation, as is the case with thorium-rich monazite bearing sand deposits where values 200–400 times higher than the world average can be found. About 2% of the world’s population live above 3 km and receive a disproportionate 10% of the annual effective collective dose due to cosmic radiation, with a net contribution to effective dose by the neutron component which is 3–4 fold that at sea level. Thus far, epidemiological studies have failed to show any adverse health effects in the populations living in these terrestrial high-background radiation areas (HBRA), which provide an unique opportunity to study the health implications of an environment that, as closely as possibly achievable on Earth, resembles the chronic exposure of future space colonists to higher-than-normal levels of ionizing radiation. Chromosomal aberrations in the peripheral blood lymphocytes from the HBRA residents have been measured in several studies because chromosomal damage represents an early biomarker of cancer risk. Similar cytogenetic studies have been recently performed in a cohort of astronauts involved in single or repeated space flights over many years. The cytogenetic findings in populations exposed to high dose-rate background radiation on Earth or in space will be discussed.  相似文献   

16.
The Sun undergoes several well known periodicities in activity, such as the Schwabe 11 year cycle, the Gleissberg 80–90 year cycle, the Suess 200–210 year cycle and the Halstatt 2200–2300 year cycle. In addition, there is evidence that the 20th century levels of solar activity are unusually high. The years 2020–2040 are expected to coincide with increased activity in human space flight beyond low Earth orbit. The solar cycles and the present level of solar activity are reviewed and their activities during the years 2020–2040 are discussed with a perspective on space radiation and the future program of space flight. It is prudent to prepare for continuing levels of high solar activity as well as for the low levels of the current deep minimum, which has corresponded to high galactic cosmic ray flux.  相似文献   

17.
When the impact risk from meteoroids and orbital debris is assessed the main concern is usually structural damage. With their high impact velocities of typically 10–20 km/s millimeter or centimeter sized objects can puncture pressure vessels and other walls or lead to destruction of complete subsystems or even whole spacecraft. Fortunately chances of collisions with such larger objects are small (at least at present). However, particles in the size range 1–100 μm are far more abundant than larger objects and every orbiting spacecraft will encounter them with certainty. Every solar cell (8 cm2 area) of the Hubble Space Telescope encountered on average 12 impacts during its 8.25 years of space exposure. Most were from micron sized particles.  相似文献   

18.
We are reporting on a design, construction and performance of solid state photon counting detector package which has been designed for laser tracking of space debris. The detector has been optimized for top photon detection efficiency and detection delay stability. The active area of the commercially available avalanche photodiode manufactured on Si (SAP500 supplied by Laser Components, Inc.) is circular with a diameter of 500 μm. The newly designed control circuit enables to operate the detection sensor at a broad range of biases 5–50 V above its breakdown voltage of 125 V. This permits to select a right trade-off between photon detection efficiency, timing resolution and dark count rate. The photon detection efficiency exceeds 70% at the wavelength of 532 nm. This is the highest photon detection efficiency ever reported for such a device. The timing properties of the detector have been investigated in detail. The timing resolution is better than 80 ps r.m.s, the detection delay is stable within units of picoseconds over several hours of operation. The detection delay stability in a sense of time deviation of 800 fs has been achieved. The temperature change of the detection delay is 0.5 ps/K. The detector has been tested as an echo signal detector in laser tracking of space debris at the satellite laser station in Graz, Austria. Its application in lunar laser ranging is under consideration by several laser stations.  相似文献   

19.
In this paper, the design of an orbital space settlement named Lakshita located at L5 for 10,000 residents having area of 1 × 106 m2 has been proposed, with the aim of fulfilling mining activities and space research in micro – g. All calculations are made in the perspective of a dynamic demography which could lead to the doubling of the population in next 25 years with initial population of 4500. The settlement consists of one residential torus, one agricultural torus, industrial cylinder and two docking cylinders rotating coaxially at 1 rpm. 2.3% of the total volume of settlement is provided for two docking cylinders with 6 docking ports enabling the elastic flow of space traffic, thereby providing continuous loading and unloading of cargo and passengers. Four pressurized sliding cylinders with 5.7 × 105 m3 volume above the down surface area moving along the spokes fulfill the need of adaptation of visitors at half the gravity level of primary settlement volumes, as well provide wobble control. 1.1 × 105 torr of pressure is provided above the down surface area of the residential torus. The power generation of 400 Mw, required for the functional need of Lakshita, will be obtained through SPS located at L4. The 14 h day and 10 h night cycle will be maintained by four mirrors attached on either side from the central cylinder. The walls of the settlement will be made up of three consecutive layers of super adobe, Nextel and Kevler-49 respectively to provide radiation and debris protection. An assortment of various facilities like appropriate distribution and management of water through an intended network of pipelines, accurate management of waste within the settlement has been provided.  相似文献   

20.
Orbit manoeuvre of low Earth orbiting (LEO) debris using ground-based lasers has been proposed as a cost-effective means to avoid debris collisions. This requires the orbit of the debris object to be determined and predicted accurately so that the laser beam can be locked on the debris without the loss of valuable laser operation time. This paper presents the method and results of a short-term accurate LEO (<900 km in altitude) debris orbit prediction study using sparse laser ranging data collected by the EOS Space Debris Tracking System (SDTS). A main development is the estimation of the ballistic coefficients of the LEO objects from their archived long-term two line elements (TLE). When an object is laser tracked for two passes over about 24 h, orbit prediction (OP) accuracy of 10–20 arc seconds for the next 24–48 h can be achieved – the accuracy required for laser debris manoeuvre. The improvements in debris OP accuracy are significant in other applications such as debris conjunction analyses and the realisation of daytime debris laser tracking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号