首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
磁流体斜激波的汇合   总被引:1,自引:1,他引:0  
本文讨论磁流体快、慢激波的汇合作用规律,主要结论如下:(1)两个前向快激波汇合之后,形成一更强的前向快激波,尾随一前向慢稀疏波、一正接触间断(后侧密度大于前侧)、一后向慢激波和一后向快稀疏浚。(2)两个前向慢激波汇合之后,形成一更强的前向慢激波,尾随一正接触间断、一后向慢稀疏波和一后向快激波2在前向慢激波前方出现一前向快波,它或为稀疏浚(中、小激波角情况),或为激波(大激波角情况).(3)前向快激波会追上前向慢激波而发生汇合,之后互换位置且强度减弱,尾随一正接触间断和一后向稀疏波对。   相似文献   

2.
磁流体斜激波的碰撞   总被引:1,自引:0,他引:1  
讨论了磁流体斜激波之间的碰撞及其与接触间断的相互作用规律,主要结论如下:(1)两个快激波碰撞后交换位置,同时出现一接触间断和一慢稀疏波对。(2)两个慢激波碰撞后交换位置且强度减弱,同时出现一接触间断和一块激波对。(3)一前向快激波与一后向慢激波碰撞后交换位置,快激波强度增加,慢激波强度减弱,同时出现一后向快激波、一负接触间断和一前向慢稀疏波。(4)一前向快激波与一正(负)接触间断相互作用后交换位置,快激波减弱,同时出现一后向快稀疏波(快激波)、一后向慢激波和一前向慢激波(慢稀疏波).(5)一前向慢激波与一正(负)接触间断相互作用后交换位置,慢激波减弱,同时出现一后向慢稀疏波(慢激波)和一快稀疏波(快激波)对。   相似文献   

3.
再论磁流体共面黎曼问题   总被引:1,自引:0,他引:1       下载免费PDF全文
本文证明一般磁流体共面间断D可分解为(这里有图片19980204-119.GIF),符号上的箭头表示各分解产物的传播方向,J为接触间断,Wf包含快激波、快简单波、1→3型中间激波及第一类快合成波,Ws包含慢激波、慢简单波、2→4型中间激波及第一类慢合成波.本文同时对某些特殊间断的分解作了分析.   相似文献   

4.
本文用一维混合粒子模拟Code研究了包括中间激波在内的多重激波.模拟了四种情形,可以分为两类:(1)由快激波和中间激波构成的两重激波,(2)快激波、中间激波和慢激波构成的三重激波.结果表明:多重激波是不稳定的,它趋向于发展成磁流体旋转间断和MHD波,左旋圆偏振波逐渐在上游区内发展起来.文章对导致多重激波不稳定性的可能原因进行了简单的讨论.  相似文献   

5.
采用一维磁流体力学模型和激波装配法,分析两个相继出现的耀斑激波的相互作用.前导激波下游的稀疏波显著改变后随激波的特性,并在它的下游产生强后向快激波.两耀斑激波汇合后将在下游形成密度比约为1.5的接触间断.  相似文献   

6.
在Petschek模型中,排空区边界处的一对慢激波是能量耗散的重要机制.已有大量行星际空间的Petschek型磁场重联排空区观测事件被报道,但是只有少量的排空区边界处观测到了慢激波.针对一例位于磁云边界层中的Petschek型磁场重联排空区观测事件,在排空区靠近磁云一侧边界处证认了一例慢激波.激波跃变层两侧的磁场和等离子体参数满足Rankine-Hugoniot关系,且激波上下游的中间马赫数均小于1,上游的慢马赫数为2.94(>1),下游的慢马赫数为0.65(<1),符合慢激波的观测特征.磁云内部的等离子体β值很低,局地阿尔芬速度高,同时磁云边界层中可能发生丰富的磁场重联活动,这可能是磁云前边界处慢激波形成的原因.   相似文献   

7.
对1978年8月27至28日期间观测到的磁云与尾随高速流的相互作用进行数值模拟,基本拟合了1AU处的观测剖面。模拟结果表明,磁云-高速流系统将导致前向快,慢激波和后向快激波的形成。  相似文献   

8.
采用二维理想MHD模型,分别在日球赤道面(二维二分量模型)和日球子午面(二维三分量模型)内研究太阳风中慢激波的传播和演化规律.结果表明,慢激波在向外传播的过程中逐渐演化为由原慢激波和新产生的快激波构成的激波系统,该激波系统在子午面内相对慢激波源中心法线基本对称,而在赤道面内则是不对称的:快激波阵面和慢激波阵面之间存在一个切触点,该处两个激波合并,蜕化为气体激波.上述切触点相对激波源中心法线东偏,且东偏角度在激波系统向外传播过程中不断增加.初步分析表明,行星际磁场的螺旋结构是产生日球赤道面内慢激波传播和演化的东西不对称性的主要原因.  相似文献   

9.
磁流体力学的共面黎曼问题   总被引:3,自引:1,他引:2  
MHD黎曼问题的求解对分析行星际扰动演化趋势和激波相互作用具有重要意义。本文基于MHD共面间断可以分解为前后向快慢激波、中心简单波和接触间断的假定,提出MHD共面黎曼问题的一种三参数迭代解法,运用该解法实现纯法向速度间断的分解,并初步探讨该解法的适用范围。   相似文献   

10.
简要阐述了分析模拟的行星际磁流体力学(MHD)激波的局部性质时,采用无厚度局部平面激波这一假设的合理性,说明了在激波未扰动区域(激波上游),物理量在几个小时内的变化很小这一事实,利用平面激波的分析方法,提出了分析模拟的行星际MHD激波的新方法,包括激波位置的确定,上下游状态参数的选择,激波局部参数的计算以及激波的分类,最后应用这种方法对一个二维的MHD模拟结果进行了分析。结果证实了过去文献关于磁流体力学混合激波空间连接和时间演化的链式规则,而且说明位于太阳赤道附近的慢激波和中间激波最终会发展为快激波。  相似文献   

11.
耀斑激波传播的数值研究   总被引:3,自引:3,他引:0  
采用一维磁流体力学模型和激波装配法,分析耀斑激波在行星际空间的传播特性和激波下游区的波动结构,并就激波装配法和激波捕捉法的模拟结果的精度和可靠性进行比较.   相似文献   

12.
Many interplanetary shock waves have a fast mode MHD wave Mach number between one and two and the ambient solar wind plasma and magnetic field are known to fluctuate. Therefore a weak, fast, MHD interplanetary shock wave propagating into a fluctuating solar wind region or into a solar wind stream will be expected to vary its strength.It is possible that an interplanetary shock wave, upon entering such a region will weaken its strength and degenerate into a fast-mode MHD wave. It is even possible that the shock may dissipate and disappear.A model for the propagation of a solar flare - or CME (Coronal Mass Ejections) - associated interplanetary shock wave is given. A physical mechanism is described to calculate the probability that a weak shock which enters a turbulent solar wind region will degenerate into a MHD wave. That is, the shock would disappear as an entropy-generate entity. This model also suggests that most interplanetary shock waves cannot propagate continuously with a smooth shock surface. It is suggested that the surface of an interplanetary shock will be highly distorted and that parts of the shock surface can degenerate into MHD waves or even disappear during its global propagation through interplanetary space. A few observations to support this model will be briefly described.Finally, this model of shock propagation also applies to corotating shocks. As corotating shocks propagate into fluctuating ambient solar wind regions, shocks may degenerate into waves or disappear.  相似文献   

13.
根据磁流体力学间断面的守恒条件与磁流体力学单波方程的相似性,引入了一个称为磁流体力学激波特征速度的物理量,它是激波在波前后两侧介质中传播速度的几何平均值,当激波很弱时,它趋近于磁流体力学波的速度。本文导出一组以此特征速度为强度参数的激波跃变公式,形式上与单波的公式组非常相像,从而简化了激波跃变量的计算。其中密度跃变公式本身解析地证明:磁流体力学激波与磁流体力学波传播速度之间的关系是由激波是压缩波这一特性直接决定的。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号