首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
利用CHAMP/STAR加速度数据反演的热层大气密度与NRLMSISE-00模式反演的热层大气密度进行比较, 结果表明, 热层大气密度在春秋季期间高于冬夏季, 并且太阳活动高年比低年更加显著; 日照面和阴影区大气密度的比值在低纬地区由太阳活动高年的4下降到太阳活动低年的2左右, 中纬地区大约由3变化到1.5, 高纬地区变化较小; NRLMSISE-00模式能够较好地模拟热层大气密度的变化趋势, 但是磁暴期间模式精度较差. 统计结果表明, 模式整体比反演结果偏高, 2002-2008年相对偏差分别为16.512%, 20.004%, 18.915%, 18.245%, 25.161%, 33.261%和41.980%; NRLMSISE-00模式在高纬地区的相对偏差为27.337%, 高于中低纬地区的24.047%; 模式在中等太阳活动水平相对偏差较为稳定, 基本在15%左右.   相似文献   

2.
2005年8月24日强磁暴事件对高层大气密度的扰动   总被引:6,自引:1,他引:5  
对2005年8月24日发生的突发型强磁暴(Kp峰值达到9)事件,利用星载大气密度探测器在轨实时的连续探测数据进行了处理和分析.结果表明,此次强磁暴事件期间,引起560 km高度附近大气密度剧烈扰动,并存在着两种响应过程.一种是跟随地磁扰动程度变化的全球性大气密度涨落变化,响应时间滞后6h左右, 最大涨落变化比为2.5;另一种为磁暴峰期出现在高纬地区的大气密度突发性跃增,增变比高达5.5.后者存在着区域上的不对称性及时间上的突发性和增幅的差异.此次强磁暴峰期还同时出现了南北半球高纬地区的大气密度跃增双峰.同时还表明这种增变峰可能存在着由高纬向低纬地区迅速推移的现象,在中纬地区推移速度可达15°/h(纬度)左右.   相似文献   

3.
利用CHAMP卫星数据,对2002-2008年12个不同强度磁暴事件期间的热层大气密度变化特征进行分析,并研究对应磁暴期间大气模式NRLMSISE-00分布特征.结果表明,大磁暴期间日侧大气密度峰值从高纬到低纬的时间延迟为2h,中小磁暴期间的延迟时间为3~4h;春秋季暴时大气密度分布基本呈南北对称分布,而夏冬季大气密度的分布是夏半球大于冬半球,春秋季暴时大气密度大于夏冬季;NRLMSISE-00大气模式得到的热层大气密度很好的体现了半球分布以及季节分布的特征,但模式模拟结果偏小;Dst指数峰值比ap指数峰值更能反应大气密度的变化情况.   相似文献   

4.
磁暴期间全球TEC扰动特性分析   总被引:3,自引:1,他引:2       下载免费PDF全文
磁暴期间白天电离层总电子含量(TEC)大幅度扰动.TEC扰动与磁暴发生时的世界时(UT)有关.利用7年的数据对TEC对磁暴的响应进行统计研究.结果显示,磁暴期间白天TEC增大明显,且在午后TEC的增大比例有一个高峰.在18:00UT-04:00UT,南美地区与其他地区相比TEC增长较大,这可能与白天的光照有关.为了研究TEC变化与磁暴的关系,结合同样时间段的Dst指数,把TEC数据分为磁暴日(Dst<-100nT)和平静日(Dst>-50nT).研究发现,将TEC前移2h,低纬日侧地区TEC增大值随着世界时的变化与Dst变化的负相关性较好,相关系数为-0.75.在中纬度地区,将TEC扰动前移1h,相关系数为-0.61.这可能是行进式大气扰动携带着赤道向的子午风,由极区向低纬传播引起.可以认为,TEC的变化可能是由磁暴引起的.在高纬地区,TEC增大值随着世界时的变化与Dst变化的相关性较差.这可能是由于太阳高度角较低,光辐射通量较小,导致电子密度的增加不明显.   相似文献   

5.
本文利用东亚地区12个低纬电离层台站的测高仪观测数据,对1978年8月27日发生的一次曲型磁暴期间电离层峰值高度和密度的变化进行了分析。采用滑动平均区分开电离层中不同时间尺度的扰动,分析了影响中低纬度电离层暴的几种扰动形态特征,并对其物理机制进行了讨论。结果表明:伴随磁暴急始的磁层压缩,电离层中表现出峰值密度增加和峰值高度下降;磁暴主相期间热层大气暴环流及其所引起的中性大气成分变化控制着电离层的大  相似文献   

6.
本文用遍布全球的52个电离层垂测台站资料,研究1958年7月8日磁暴期间全球电离层扰动的发展变化;各扇区的响应特性;扰动的传播轨迹及速度等。获得以下结果:1.几大扇区的电离层扰动始于南北两极,美洲扇区除具这一特征外,其赤道地区在磁暴急始后不久,出现一个扰动中心,邻近区域的扰动受其控制。2.扰动由高纬向低纬发展,由扰动中心向外传播。3.扰动峰面几乎与地磁力线垂直,即扰动沿磁力线方向发展,其传播速度大约在150—600m/s范围。  相似文献   

7.
利用武汉电离层观象台研制的GPS TEC的现报方法及现报系统,对东亚地区GPS台网的观测数据进行处理分析,特别对2000年7月14-18日和2003年10月28日至11月1日两次特大磁暴期间的数据进行了对比考察,文中分析了两次磁暴间的电离层响应,得到对应不同磁暴时段电离层TEC的不同变化情况,着重揭示了TEC赤道异常峰的压缩和移动以及赤道异常随时间的压缩—反弹—恢复的过程,并结合高纬电离层的部分响应机制进行了说明,结果显示,两次磁暴期的电离层响应表现出了各自不同的特点,从而反映出因季节变化引起的高纬电离层暴时能量注入的不同而造成的全球性电离层扰动的不同形态,由此看出,磁暴期间电离层TEC的变化直接与太阳扰动发生的时间及其对高纬电离层的耦合有关,若短时期内连续发生多次磁暴,则电离层反应更加复杂,不能简单地当做单一磁暴叠加处理。  相似文献   

8.
超低轨道(VLEO)由于其轨道较低,在该轨道运行的航天器在对地观测、科学研究方面具有独特优势,但对该轨道的大气密度变化特性认知不足。在阐述国内外超低轨道大气密度原位探测发展历史及现状的基础上,总结了现有超低轨道大气密度原位探测技术,对中国超低轨道大气密度原位结果进行了初步分析和讨论。结果表明:在2020年10月空间环境平静期,250 km和350 km高度大气密度相差一个量级;升降轨期间,超低轨道大气密度每千米分别下降0.025×10-12 kg/m3和0.041×10-12 kg/m3,均小于模式值的0.5倍;北纬40°时,处于午夜的升轨段(约250 km)大气密度是处于正午的降轨段(约420 km)大气密度的11.2倍,高度的影响大于地方时的影响;不同纬度下,实测日均值和模式日均值的比值从高纬的0.49降为低纬的0.39,模式值偏大。在超低轨道上,实测值总体上比模式值小,可为大气物理研究和应用研究提供基础数据。   相似文献   

9.
低轨道高度上能量电子通量变化与地磁扰动程度密切相关.利用我国资源2号(ZY-2)03星空间环境监测分系统在轨工作期间所获得的能量电子探测数据,以及美国NOAA-15,NOAA-16,NOAA-17三颗卫星中等能量电子探测器自1998年以来积累的太阳同步轨道中等能量电子探测数据,结合地磁活动观测数据,对低轨道高度上中等能量电子对地磁扰动的响应特性进行了统计分析.结果表明,该区域的中等能量电子通量在磁暴、磁层亚暴期间有显著增强,增幅大小与地磁活动程度呈正相关关系,强磁暴期间增幅可达一个数量级左右,在响应时间上存在电子通量变化滞后于磁扰的时间特性.   相似文献   

10.
利用NCAR-TIEGCM计算了第23太阳活动周期间(1996—2008年)400km高度上的大气密度,并统计分析大气密度对太阳辐射指数FF10.7的响应.结果表明,在第23太阳活动周内,大气密度的变化趋势与太阳辐射指数FF10.7的变化趋势基本一致,但是大气密度在不同年份、不同月份对太阳辐射指数FF10.7的响应存在差异.第23太阳活动周内太阳辐射极大值和极小值之比大于4,而大气密度的极大值与极小值之比则大于10.太阳辐射低年的年内大气密度变化不到2倍,而太阳辐射高年的年内大气密度变化可达2倍甚至3倍.大气密度与FF10.7指数在北半球高纬的相关系数比南半球高纬的相关系数大.在低纬地区,太阳辐射高年大气密度与FF10.7指数的相关系数比低年的大.不同纬度上,大气密度与太阳辐射指数FF10.7的27天变化值之间的相关系数都大于其与81天变化值之间的相关系数.   相似文献   

11.
本文利用100kHz的低频无线电波资料,计算分析了1986—1987年期间,几种不同磁扰情况下,低纬地区夜间电离层中100km以下区域积分电子浓度及其变化的起因.结果表明:该区域电子浓度的变化与地磁扰动关系密切.在磁静日期间,其值较小,且随磁扰而变化,但比磁扰滞后1到2天.在磁暴后,其值较大,会出现几次剧烈起伏.该区域积分电子浓度的起伏可大于一个量级.沉降电子产生的动致辐射可能是引起该区域电子浓度变化的主要原因之   相似文献   

12.
Based on the measurements made by Atmospheric Density Detectors (ADDs) onboard Chinese spacecraft Shenzhou 2-4, the variations of thermosphere density are revealed. During the quiet period, the density at spacecraft altitude of 330~410km exhibited a dominant diurnal variation, with high value on dayside and low value on nightside. The ratio of the diurnal maximum density to the minimum ranged from 1.7 to 2.0. The ratio shows a positive correlation with the level of solar activity and a negative correlation with the level of geomagnetic activity. When a geomagnetic disturbance comes, the atmospheric density at the altitude of 330~410km displayed a global enhancement. For a strong geomagnetic disturbance, the atmospheric density increased by about 56%, and reached its maximum about 6~7 hours after the geomagnetic disturbance peak. The density asymmetry was also observed both in the southern and northern hemisphere during the geomagnetic disturbance peak.   相似文献   

13.
利用GRACE(Gravity Recovery And Climate Experiment)和CHAMP(Challenging Mini-Satellite Payload)卫星2002-2008年的大气密度数据与NRLMSISE-00大气模型密度结果进行比较,分析了模型密度误差及其特点.结果显示,NRLMSISE-00大气模型计算的密度值普遍偏大,其相对误差随经纬度变化,在高纬度相对较小;相对误差随地方时变化,在02:00LT和15:00LT左右较大,10:00LT和20:00LT左右较小.通过模型密度相对误差与太阳F10.7指数的对比分析发现,在太阳活动低年模型相对误差最大,而在太阳活动高年相对误差较小;将模型结果分别与GRACEA/B双星和CHAMP卫星的密度数据进行比较,发现对于轨道高度更高的GRACE卫星轨道,模型相对误差更大;在地磁平静期,相对误差与地磁ap指数(当前3h)相关性不强,但是在大磁暴发生时,误差急剧增大.   相似文献   

14.
关于地磁和太阳活动对Es层形成的影响,已有研究所得结论不同甚至相互矛盾.为研究太阳和地磁活动对Es层的影响,对4个太阳活动周期(1970-2010年)高中低纬度站点每小时Es层的参数进行了分析.结果表明太阳和地磁活动对Es层形成确实具有影响,而且不同纬度Es层与太阳和地磁活动的相关系数也不相同.同时对Es层各参数对于太阳和地磁活动不同反应的原因进行了解释.   相似文献   

15.
针对如何利用GNSS(Global Navigation Satellite System)数据进行电离层扰动监测的问题,提出了一种基于GNSS数据表征全球电离层扰动的方法.利用大约400个GNSS地面站点的观测数据,计算总电子含量(Total Electron Content,TEC)变化率的标准差——ROTI(Ra...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号