首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A long temporal series of simulated ionograms was generated with a superimposed secular variation of −14 km/century on the hmF2 parameter. These ionograms were interpreted by the automatic scaling program Autoscala. By applying four different empirical formulas, four artificial series of hmF2 were generated and then processed with the same methods used by other authors for real data sets. Data analysis of the simulated ionograms revealed the artificially imposed long-term trend. These results lead to the conclusion, that regardless of the empirical formula used, the accuracy of hmF2 from ionosonde measurements would be adequate to observe a long-term trend of −14 km/century.  相似文献   

2.
The geometries, dipole moments, and rotational constants for the linear and/or bent cations, Cn+1H+ and CnN+(n = 1–6), were studied by the B3LYP method with the modest basis sets. For CnH+(n = odd; 3, 5, 7) and CnN+(n = even; 2, 4, 6), the theoretical rotational constants (Bes) of closed-shell singlet C3H+, C5H+, C7H+, CCN+, C4N+, and C6N+ were calculated to be about 11,244, 2420, 885.2, 11,970, 2439, and 880.8 MHz, respectively. By contrast, the triplets are stable than the corresponding singlets for CnH+(n = odd; 2, 4, 6) and CnN+(n = even; 3, 5) except CN+.  相似文献   

3.
This paper presents the results of the numerical calculations thermosphere/ionosphere parameters which were executed with using of the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP)and comparison of these results with empirically-based model IRI-2001. Model GSM TIP was developed in West Department of IZMIRAN and solves self-consistently the time-dependent, 3-D coupled equations of the momentum, energy and continuity for neutral particles (O2, N2, O), ions (O+, H+), molecular ions (M+) and electrons and largescale eletric field of the dynamo and magnetospheric origin in the range of height from 80 km to 15 Earth’s radii. The empirically derived IRI model describes the E and F regions of the ionosphere in terms of location, time, solar activity and season. Its output provides a global specification not only of Ne but also on the ion and electron temperatures and the ion composition. These two models represent a unique set of capabilities that reflect major differences in along with a substantial approaches of the first-principles model and global database model for the mapping ionosphere parameters. We focus on global distribution of the Ne, Ti, Te and TEC for the one moment UT and fixed altitudes: 110 km, hmF2, 300 km and 1000 km. The calculations were executed with using of GSM TIP and IRI models for August 1999, moderate solar activity and quiet geomagnetic conditions. Results present as the global differences between the IRI and GSM TIP models predictions. The discrepancies between model results are discussed.  相似文献   

4.
We present a Monte-Carlo technique to study the time-dependent transport of energetic particles in the interplanetary medium. We use the guiding center approximation between discrete finite pitch-angle scatterings to quantify the competing effects of focusing and pitch-angle scattering on energetic particles propagating along a Parker spiral magnetic field. We consider that the pitch-angle scattering process is produced by small-scale magnetic field irregularities frozen in the expanding solar wind. We also include the effects of both solar wind convection and adiabatic deceleration. We use a joint probability distribution P(h, μ′) = p(h; μ′)q(μ′; μ) to describe both the distance traveled by the particle between two scattering processes and the change in the particle pitch-angle after a scattering process. Here, p(h; μ′) is the conditional probability that the particle travels a distance h along the field line before the next scattering if it had a pitch-angle cosine μ′ after the previous scattering, and q(μ′; μ) is the conditional probability for the pitch-angle cosine μif the pitch-angle cosine was μ before the scattering. We consider several functional forms to describe the processes of pitch-angle scattering, such as an isotropic scattering without any memory of the initial particle’s pitch-angle or processes in which the scattering result depends upon the initial particle’s pitch-angle. The results of our simulations are pitch-angle distributions and time-intensity profiles that can be directly compared to spacecraft observations. Comparison of our simulations with near-relativistic (45–290 keV) electron events observed by the Electron, Proton and Alpha Monitor on board the Advanced Composition Explorer allows us to estimate both the time dependence of the injection of near-relativistic electrons into the interplanetary medium and the conditions for electron propagation along the interplanetary magnetic field.  相似文献   

5.
We propose a new parameter for quality evaluation of ionogram traces reconstructed by Autoscala. This parameter efficiently assesses the reliability of the automatic interpretation of ionospheric characteristics. Based on an extensive analysis of the data, the parameter values are statistically associated with the accuracy of foF2 data automatically scaled by Autoscala. Therefore, Autoscala will be improved by providing foF2 accuracy as supplementary output information.  相似文献   

6.
This is to investigate ways of improving the Equatorial F2-layer peak heights estimated from M(3000)F2 ionosonde data measured using the Ionospheric Prediction Service (IPS-42) sounder at Ouagadougou, Burkina Faso (Latitude +12.4°N, Longitude +1.5°W, Dip latitude +5.9°N) during a low solar activity year (1995). For this purpose, we have compared the observed hmF2 (hmF2obs) deduced using an algorithm from scaled virtual heights of quiet day ionograms and the predicted hmF2 values which is given by the IRI 2007 model (hmF2IRI 2007) with the ionosonde measured M(3000)F2 estimation of the hmF2 values (hmF2est) respectively. The correlation coefficients R2 for all the seasons were found to range from 0.259 to 0.692 for hmF2obs values, while it ranges from 0.551 to 0.875 for the hmF2IRI 2007 values. During the nighttime, estimated hmF2 (hmF2est) was found to be positively correlated with the hmF2obs values by the post-sunset peak representation which is also represented by the hmF2IRI 2007 values. We also investigated the validity of the hmF2est values by finding the percentage deviations when compared with the hmF2obs and hmF2IRI 2007.  相似文献   

7.
We present measurements of the thermal conductivity λ(t, P, L) = l/ρ(t, P, L) near the superfluid transition of 4He at saturated vapor pressure and confined in cylindrical geometries with radii L = 0.5 and 1.0 μm (t  T/Tλ(P)  1). For L = 1.0 μm measurements at six pressures P are presented. At and above Tλ the data are consistent with a universal scaling function F(X) = (L/ξo)x/ν(ρ/ρ0), X = (L/ξo)1/νt valid for all P (ρ0 and x are the pressure-dependent amplitude and effective exponent of the bulk resistivity ρ(t, P, ∞) = ρ0tx and ξ = ξ0tν is the correlation length). Indications of breakdown of scaling and universality are observed below Tλ.  相似文献   

8.
As the prevailing tidal winds in the E region are generated by heating mechanisms, the dynamics of Es layers impacted by solar tides is a relevant theme in the space weather studies. This paper aims to identify the tidal wind component involved in the mechanism of formation and descending of the high type of sporadic layer (Esh). The Esh layers observed at altitudes between around 120 and 150 km in the Brazilian low latitude stations of Jataí and São José dos Campos during the months of April, June, September and December of 2016 are used in this analysis. The height variability and altitude descent of the Esh layers are analyzed from the h′Es parameter obtained by ionosonde data. In this study, the observational data are compared with the simulations generated by an extended version of the Ionospheric E-Region Model (MIRE). At higher altitudes in the E region, the results show that the prevailing tidal pattern and wind direction controlling the Esh layer formation and descent are different depending on month: (a) in April and June the zonal wind component and the associated semidiurnal tidal oscillations prevail, with some differences in terms of time of occurrence and descending speeds, and (b) in September and December the diurnal tidal periodicities become dominant, and both the meridional and zonal wind components seem to control the descending of the Esh layers. Since the role of the tidal periodicities and wind directions changed depending on the month, the results suggest a possible seasonal tidal wind pattern, which is not well understood from the present study but requires further investigation. Other relevant aspects of the observations and the modeling are highlighted and discussed.  相似文献   

9.
Long-term changes in the E-layer critical frequency, foE, at three stations of the European region (Juliusruh, Slough and Rome) and also at Moscow and Wakkanai stations are analyzed by the method developed by the authors and described in detail in the previous papers. It is found that Juliusruh and Slough stations demonstrate a well-pronounced change in foE (a trend) during two previous decades. At the same time, the same features of the behavior of the aforementioned trend k(foE) are obtained. The trend is positive and negative in the morning and evening hours, respectively. Similar diurnal behavior of k(foE) is found also for Moscow station but with lower absolute values of the trends. A well-pronounced seasonal behavior of k(foE) is detected at Juliusruh and Slough: the trend is minimal and maximal in the summer period and at the end of fall—beginning of winter, respectively. The maximal amplitude in the morning hours reaches +0.04?MHz per year, whereas the minimal amplitude in evening hours is ?0.06?MHz per year. No systematic changes exceeding by the magnitude 0.01?MHz per year are found for Rome and Wakkanai stations. It is assumed that the observed trends are related to changes (trends) in the meridional wind bringing NO molecules from the auroral oval to lower latitudes.  相似文献   

10.
The time series of hourly electron density profiles N(h) obtained from 27 ionosonde stations distributed world-wide have been used to obtain N(h) average profiles on a monthly basis and to extract the expected bottom-side parameters that define the IRI profile under quiet conditions. The time series embrace the time interval from 1998 to 2006, which practically contains the entire solar cycle 23. The Spherical Harmonic Analysis (SHA) has been used as an analytical technique for modeling globally the B0 and B1 parameters as general functions on a spherical surface. Due to the irregular longitudinal distribution of the stations over the globe, it has been assumed that the ionosphere remains approximately constant in form for a given day under quiet conditions for a particular coordinate system. Since the Earth rotates under a Sun-fixed system, the time differences have been considered to be equivalent to longitude differences. The time dependence has been represented by a two-degree Fourier expansion to model the annual and semiannual variations and the year-by-year analyses of the B0 and B1 have furnished nine sets of spherical harmonic coefficients for each parameter. The spatial–temporal yearly coefficients have been further expressed as linear functions of Rz12 to model the solar cycle dependence. The resultant analytical model provides a tool to predict B0 and B1 at any location distributed among the used range of latitudes (70°N–50°S) and at any time that improves the fit to the observed data with respect to IRI prediction.  相似文献   

11.
The N4,5OO Auger electron spectrum in the kinetic energy region (14–37) eV has been measured with high resolution at electron incident energies between 71 eV and 2019 eV. The Auger and satellite lines are assigned by comparison with previous literature data. Several states which correspond to the resonant Auger transitions from the 4d3/2, 5/2 6p states are observed. The PCI effects on the N5-O2,3O2,3(1S0) Auger peak when the incident electron energy approaches to the N5 edge (67.55 eV) is investigated and it is found that the dependence of the energy shift on the excess energy, Eexc, is well represented by the function Eexcβ with β = (-1.40 ± 0.05). The N3 N4,5O2,3 Coster-Kronig spectrum is measured at various electron incident energies. The assignments of the features are made in comparison with a similar spectrum from synchrotron radiation measured by Kivimäki et al. [J. Electron Spectrosc. Relat. Phenom. 1999, 101103, 43–47]. The Auger spectrum in the kinetic energy regions (68–78) eV and (90–138) eV is observed for the first time in an electron impact experiment and a comparison is made with the photoionization experiment by Hikosaka et al. [Phys. Rev. A 2007, 76, 032708].  相似文献   

12.
Recent review study done jointly by 19 experts of 17 institutes shows zero trend of temperature in the upper mesosphere. In the light of this latest development, we have examined the long-term changes in electron density, [e], in this region. The study has been concentrated at 80 km. At this altitude, electrons are mainly produced by the interaction of nitric oxide, NO, by solar Ly-α. Any long-term change in this flux will affect trend of [e]. Considering this flux proportional to 10.7 cm solar flux, analysis of available 10.7 cm solar flux data from 1948 to 2003 has been made. A decreasing trend up to about 1970 and then an increasing trend are found. The over-all increasing trend of Ly-α flux during the past five decades is ∼0.17% per year. This increase also gives a ∼0.17% increasing trend per year in [e]. This non-anthropogenic increase is much less compared to the observed increase in [e] which is reported to be >0.7% per year. The observed increase in [e] of this magnitude will then, predominantly, be due to the anthropogenic effect. In zero trend in temperature, significant change in electron loss coefficient, αeff, and [NO] are unlikely to take place to cause a significant change in [e]. The increase in [e] > 0.7% per year then can be explained by considering a decreasing trend in [O2].  相似文献   

13.
This paper investigates the ionospheric storm of December 19–21, 2015, which was initiated by two successive CME eruptions that caused a G3 space weather event. We used the in situ electron density (Ne) and electron temperature (Te) and the Total Electron Content (TEC) measurements from SWARM-A satellite, as well as the O/N2 observations from TIMED/GUVI to study the ionospheric impact. The observations reveal the longitudinal and hemispherical differences in the ionospheric response to the storm event. A positive ionospheric storm was observed over the American, African and Asian regions on 20 December, and the next day showed a negative storm. Both these exhibited hemispheric differences. A positive storm was observed over the East Pacific region on 21 December. It is seen that the net effect of both the disturbance dynamo electric field and composition differences become important in explaining the observed variability in topside ionospheric densities. In addition, we also discuss the Te variations that occurred as a consequence of the space weather event.  相似文献   

14.
The height, hmF2, and the electron density, NmF2, of the F2 peak are key model parameters to characterize the actual state of the ionosphere. These parameters, or alternatively the propagation factor, M3000F2, and the critical frequency, foF2, of the F2 peak, which are related to hmF2 and NmF2, are used to anchor the electron density vertical profile computed with different models such as the International Reference Ionosphere ( Bilitza, 2002), as well as for radio propagation forecast purposes. Long time series of these parameters only exist in an inhomogeneous distribution of points over the surface of Earth, where dedicated instruments (typically ionosondes) have been working for many years. A commonly used procedure for representing median values of the aforementioned parameters all over the globe is the one recommended by the ITU-R ( ITU-R, 1997). This procedure, known as the Jones and Gallet mapping technique, was based on ionosondes measurements gathered from 1954 to 1958 by a global network of around 150 ionospheric stations (  and ). Even though several decades have passed since the development of that innovative work, only few efforts have been dedicated to establish a new mapping technique for computing hmF2 and NmF2 median values at global scale or to improve the old method using the increased observational database. Therefore, in this work three different procedures to describe the daily and global behavior of the height of the F2 peak are presented. All of them represent a different and simplified method to estimate hmF2 and are based on different mathematical expressions. The advantages and disadvantages of these three techniques are analyzed, leading to the conclusion that the recommended procedure to represent hmF2 is best characterized by a Spherical Harmonics expansion of degree and order equal to 15, since the differences between the hmF2 values obtained with the Jones and Gallet technique and those obtained using the abovementioned procedure are of only 1%.  相似文献   

15.
We observed the radio and X-ray source G359.23–0.82, also known as “the Mouse”, with XMM-Newton. The X-ray image of this object shows a point-like source at the Mouse’s “head”, accompanied by a “tail” that extends for about 40″ westward. The morphology is consistent with that observed recently with Chandra [Gaensler, B.M., van der Swaluw, E., Camilo, F., et al. The Mouse that soared: high resolution X-ray imaging of the pulsar-powered bow shock G359.23–0.82, ApJ 616, 383–402, 2004]. The spectrum of the head can be described by a power-law model with a photon index Γ  1.9. These results confirm that the Mouse is a bow-shock pulsar wind nebula (PWN) powered by PSR J1747–2958. We found that the hydrogen column density toward the Mouse, NH = (2.60 ± 0.09) × 1022 cm−2, is 20%–40% lower than those toward two serendipitously detected X-ray bursters, SLX 1744–299 and SLX 1744–300. At a plausible distance of 5 kpc, the X-ray luminosity of the Mouse, L(0.5–10 keV) = 3.7 × 1034 erg s−1, is 1.5% of the pulsar’s spin-down luminosity. We detected a Type I X-ray burst from SLX 1744–300 and found a possible decrease of NH and persistent luminosity for this source, in comparison with those observed with ROSAT in 1992.  相似文献   

16.
A possible gluon-condensate-induced modified-gravity model with f(R) ∝ ∣R1/2 has been suggested previously. Here, a simplified version is presented using the constant flat-spacetime equilibrium value of the QCD gluon condensate and a single pressureless matter component (cold dark matter, CDM). The resulting dynamical equations of a spatially-flat and homogeneous Robertson-Walker universe are solved numerically. This simple empirical model allows, in fact, for a careful treatment of the boundary conditions and does not require a further scaling analysis as the original model did. Reliable predictions are obtained for several observable quantities of the homogeneous model universe. In addition, the estimator EG, proposed by Zhang et al. to search for deviations from standard Einstein gravity, is calculated for linear sub-horizon matter-density perturbations. The QCD-scale modified-gravity prediction for EG(z) differs from that of the ΛCDM model by about ±10% depending on the redshift z.  相似文献   

17.
18.
The effects of galactic and solar cosmic rays (CR) in the middle atmosphere are considered in this work. A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and middle atmosphere is developed in this paper. For this purpose the ionization losses (dE/dh) according to the Bohr–Bethe–Bloch formula for the energetic charged particles are approximated in three different energy intervals. More accurate expressions for energy decrease E(h) and electron production rate profiles q(h) are derived. The obtained formulas allow comparatively easy computer programming. The integrand in q(h) gives the possibility for application of adequate numerical methods – such as Romberg method or Gauss quadrature, for the solution of the mathematical problem. On this way the process of interaction of cosmic ray particles with the upper, middle and lower atmosphere will be described much more realistically. Computations for cosmic ray ionization in the middle atmosphere are made. The full CR composition is taken into account: protons, Helium (α-particles), light L, medium M, heavy H and very heavy VH group of nuclei.  相似文献   

19.
Solar wind data is used to estimate the autocorrelation function for the stochastic process x(τ) = y(t + τ) − y(t), considered as a function of τ, where y(t) is any one of the quantities B2(t), np(t)V2(t), or np(t). This process has stationary increments and a variance that increases like a power law τ2γ where γ is the scaling exponent. For the kinetic energy density and the proton density the scaling exponent is close to the Kolmogorov value γ = 1/3, for the magnetic energy density it is slightly larger. In all three cases, it is shown that the autocorrelation function estimated from the data agrees with the theoretical autocorrelation function for a self-similar stochastic process with stationary increments and finite variance. This is far from proof, but it suggests that these stochastic processes may be self-similar for time scales in the small scale inertial range of the turbulence, that is, from approximately 10 to 103 s.  相似文献   

20.
We have used the technique of expansion in Empirical Orthogonal Functions (EOFs) to develop regional models of the critical frequencies of E and F2 layers (foE, foF2), peak height (hmF2), and semi-thickness of F2 layer (YmF2) over Pakistan. In the present study levels of solar activity specified by Smoothed Sunspot Number (R) from 10 to 200 are taken into account. The magnetic dip angle for the model ranges from 30° to 60°. We have compared the regional model and the International Reference Ionosphere (IRI) with measurements of three ionosondes in Pakistan. The model parameters foE and foF2 are found overall comparable to the observed hourly median values during daytime at Karachi (geographic latitude = 24.95°N, longitude = 67.13°E, magnetic inclination = 37°), Multan (30.18°N, 71.48°E, 45°) and Islamabad (33.75°N, 73.13°E, 51.5°) during the years 1988, 1996 and 2000. For hmF2 the computed values by regional and IRI model for the year 1995 are found close to each other. However, for YmF2the results are better during daytime as compared to nighttime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号